# A.I.M.S algorithms

HessenbergQR< T > Class Template Reference

#include <aims/math/hqr.h>

## Public Member Functions

AimsData< T > doit (AimsData< T > &, AimsData< T > &, AimsData< T > *zz=NULL)
Hessenberg matrices' QR transformation. More...

HessenbergQR ()
Constructor and destructor. More...

virtual ~HessenbergQR ()
destructor More...

## Detailed Description

### template<class T> class HessenbergQR< T >

Definition at line 46 of file hqr.h.

## Constructor & Destructor Documentation

template<class T >
 HessenbergQR< T >::HessenbergQR ( )
inline

Constructor and destructor.

constructor

Definition at line 53 of file hqr.h.

template<class T >
 virtual HessenbergQR< T >::~HessenbergQR ( )
inlinevirtual

destructor

Definition at line 55 of file hqr.h.

## Member Function Documentation

template<class T >
 AimsData< T > HessenbergQR< T >::doit ( AimsData< T > & , AimsData< T > & , AimsData< T > * zz = NULL )

Hessenberg matrices' QR transformation.

\ This function is adapted from the Eispack routine 'hqr2.f'. \ This routine returns the real parts of the eigenvalues of a real upper Hessenberg matrix passed on input by the QR method. \ The second parameter is output as the imaginary parts of the eigenvalues. \

Parameters
 zz contains (on output) the real and imaginary parts of the eigenvectors. If the i-th eigenvalue is real, the i-th column of zz contains its eigenvector. If the i-th eigenvalue is complex with positive imaginary part, the i-th and (i+1)-th columns of zz contain the real and imaginary parts of its eigenvector, and an other eigenvector is formed by its complex conjugate.

The documentation for this class was generated from the following file: