aimsalgo 6.0.0
Neuroimaging image processing
classifstrategy.h
Go to the documentation of this file.
1/* This software and supporting documentation are distributed by
2 * Institut Federatif de Recherche 49
3 * CEA/NeuroSpin, Batiment 145,
4 * 91191 Gif-sur-Yvette cedex
5 * France
6 *
7 * This software is governed by the CeCILL-B license under
8 * French law and abiding by the rules of distribution of free software.
9 * You can use, modify and/or redistribute the software under the
10 * terms of the CeCILL-B license as circulated by CEA, CNRS
11 * and INRIA at the following URL "http://www.cecill.info".
12 *
13 * As a counterpart to the access to the source code and rights to copy,
14 * modify and redistribute granted by the license, users are provided only
15 * with a limited warranty and the software's author, the holder of the
16 * economic rights, and the successive licensors have only limited
17 * liability.
18 *
19 * In this respect, the user's attention is drawn to the risks associated
20 * with loading, using, modifying and/or developing or reproducing the
21 * software by the user in light of its specific status of free software,
22 * that may mean that it is complicated to manipulate, and that also
23 * therefore means that it is reserved for developers and experienced
24 * professionals having in-depth computer knowledge. Users are therefore
25 * encouraged to load and test the software's suitability as regards their
26 * requirements in conditions enabling the security of their systems and/or
27 * data to be ensured and, more generally, to use and operate it in the
28 * same conditions as regards security.
29 *
30 * The fact that you are presently reading this means that you have had
31 * knowledge of the CeCILL-B license and that you accept its terms.
32 */
33
34
35
36#ifndef CLASSIFSTRATEGY_H
37#define CLASSIFSTRATEGY_H
38
40#include <aims/vector/vector.h>
41#include <vector>
42#include <list>
43
44namespace aims{
45 template<class T>
47 public:
48 ClassifStrategy( int maxNbOfIterations = 50 ) ;
49 virtual ~ClassifStrategy() ;
50
51 virtual ClassifStrategy<T> * clone() const = 0 ;
53 void reset() { myInit = true ; }
54 bool isInit() { return myInit ; }
57
58 virtual void init( std::string initializationType, int nbOfClasses,
59 std::vector< std::list< Individuals<T> > >& classes ) = 0 ;
60 virtual double iterate ( int& nbOfIterations,
61 std::vector< std::list< Individuals<T> > >& classes ) = 0 ;
62 virtual void analyse( const std::vector< std::list< Individuals<T> > >& classes ) = 0 ;
63 virtual int aggregate( const Individuals<T>& individual ) = 0 ;
64
65 virtual Individuals<T> getMeanValue( int classe ) = 0 ;
66 virtual std::vector< Individuals<T> > getMeanVector() = 0 ;
67
68 virtual double globInertia( const std::vector< std::list< Individuals<T> > >& classes ) = 0 ;
69
70 protected:
71 virtual float distance( const Individuals<T>& individual, int classe ) = 0 ;
72 // type de données: vecteur de listes d'individus (pour chaque classe, on a la liste des individus)
73 int myMaxNbOfIterations ; // nombre maximum d'itérations
74 bool myValidStrategy ; // strategie valide ?
75 bool myInit ; // initialisation faite ou non ?
76 bool myCodeVectorsGiven ; // vecteurs codes donnes ou non ?
77 } ;
78}
79
80
81#endif
virtual void analyse(const std::vector< std::list< Individuals< T > > > &classes)=0
virtual double globInertia(const std::vector< std::list< Individuals< T > > > &classes)=0
virtual std::vector< Individuals< T > > getMeanVector()=0
int getMaxNbOfIterations() const
virtual float distance(const Individuals< T > &individual, int classe)=0
virtual int aggregate(const Individuals< T > &individual)=0
virtual Individuals< T > getMeanValue(int classe)=0
ClassifStrategy(int maxNbOfIterations=50)
virtual void init(std::string initializationType, int nbOfClasses, std::vector< std::list< Individuals< T > > > &classes)=0
virtual ClassifStrategy< T > * clone() const =0
virtual double iterate(int &nbOfIterations, std::vector< std::list< Individuals< T > > > &classes)=0