aimsalgo 6.0.0
Neuroimaging image processing
pca_d.h
Go to the documentation of this file.
1/* This software and supporting documentation are distributed by
2 * Institut Federatif de Recherche 49
3 * CEA/NeuroSpin, Batiment 145,
4 * 91191 Gif-sur-Yvette cedex
5 * France
6 *
7 * This software is governed by the CeCILL-B license under
8 * French law and abiding by the rules of distribution of free software.
9 * You can use, modify and/or redistribute the software under the
10 * terms of the CeCILL-B license as circulated by CEA, CNRS
11 * and INRIA at the following URL "http://www.cecill.info".
12 *
13 * As a counterpart to the access to the source code and rights to copy,
14 * modify and redistribute granted by the license, users are provided only
15 * with a limited warranty and the software's author, the holder of the
16 * economic rights, and the successive licensors have only limited
17 * liability.
18 *
19 * In this respect, the user's attention is drawn to the risks associated
20 * with loading, using, modifying and/or developing or reproducing the
21 * software by the user in light of its specific status of free software,
22 * that may mean that it is complicated to manipulate, and that also
23 * therefore means that it is reserved for developers and experienced
24 * professionals having in-depth computer knowledge. Users are therefore
25 * encouraged to load and test the software's suitability as regards their
26 * requirements in conditions enabling the security of their systems and/or
27 * data to be ensured and, more generally, to use and operate it in the
28 * same conditions as regards security.
29 *
30 * The fact that you are presently reading this means that you have had
31 * knowledge of the CeCILL-B license and that you accept its terms.
32 */
33
34
35#include <aims/math/svd.h>
36#include <aims/math/pca.h>
37#include <aims/io/writer.h>
38
39template <typename T>
40void
41AimsPCA::doIt( const std::list< Point3d >& selectedPoints,
42 const carto::rc_ptr<carto::Volume<T> > & data )
43{
44 carto::VolumeRef<T> individuals(
45 std::max(int(selectedPoints.size()), 1), data->getSizeT(), 1, 1,
46 carto::AllocatorContext::fast() );
47 int i = 0 ;
48 std::list< Point3d >::const_iterator iter( selectedPoints.begin() ), last( selectedPoints.end() ) ;
49 while( iter != last )
50 {
51 for(int t = 0 ; t < data->getSizeT() ; ++t )
52 individuals( i, t ) = data->at( (*iter)[0], (*iter)[1], (*iter)[2], t ) ;
53 ++i ; ++iter ;
54 }
55 doIt( individuals ) ;
56}
57
58template <typename T>
59void
61{
62 _computed = true ;
63 _validPca = true ;
64 _matricesComputed = false ;
65 int nbFrame = individuals->getSizeY();
66
67 carto::VolumeRef<float> centeredIndivMatrix(
68 individuals->getSizeX(), individuals->getSizeY(), 1, 1,
69 carto::AllocatorContext::fast() );
70
71 if( _center || _normalize )
72 {
73 _mean = std::vector<float>(individuals->getSizeY(), 0.) ;
74 _var = std::vector<float>(individuals->getSizeY(), 0.) ;
75 T val ;
76 for( int ind = 0 ; ind < individuals->getSizeX() ; ++ind )
77 for( int t = 0 ; t < individuals->getSizeY() ; ++t )
78 {
79 val = individuals->at( ind, t ) ;
80 _mean[t] += val ;
81 _var[t] += val * val ;
82 }
83
84 //double meanMean = 0. ;
85
86 for( int t = 0 ; t < nbFrame ; ++t )
87 {
88 _mean[t] /= centeredIndivMatrix->getSizeX() ;
89 _var[t] = sqrt( _var[t] / ( centeredIndivMatrix->getSizeX() - 1 )
90 - _mean[t] * _mean[t] );
91 for( int ind = 0 ; ind < centeredIndivMatrix->getSizeX() ; ++ind )
92 {
93 centeredIndivMatrix( ind, t ) = individuals->at( ind, t ) ;
94 if( _center )
95 {
96 centeredIndivMatrix( ind, t ) -= _mean[t] ;
97 //meanMean += centeredIndivMatrix( ind, t ) ;
98 }
99 if( _normalize )
100 centeredIndivMatrix( ind, t ) /= _var[t] ;
101 }
102 }
103 //meanMean /= centeredIndivMatrix.getSizeX() * centeredIndivMatrix.getSizeY() ;
104 //std::cout << "Centered data mean (should be 0.) = " << meanMean << std::endl ;
105 }
106
107
108 // Matrice des correlations
110 centeredIndivMatrix->getSizeY(), centeredIndivMatrix->getSizeY(), 1, 1,
111 carto::AllocatorContext::fast() );
112
113 int x1, y1;
114 int dx1 = matVarCov->getSizeX(), dy1 = matVarCov->getSizeY();
115
116 for( y1=0; y1<dy1; ++y1 )
117 for( x1=0; x1<dx1; ++x1 )
118 {
119 for(int k=0; k < centeredIndivMatrix->getSizeX() ;++k)
120 matVarCov(x1, y1)
121 += centeredIndivMatrix(k, x1) * centeredIndivMatrix(k, y1);
122 matVarCov(x1, y1) /= centeredIndivMatrix->getSizeX() - 1;
123 }
124 std::cerr << "var cov filled" << std::endl ;
125
126/* cout << "Centered Indiv Matrix = " << endl */
127/* << centeredIndivMatrix.transpose() << endl ; */
128/* cout << "Mat Var Cov = " << endl */
129/* << matVarCov << endl ; */
130
131 // Decomposition SVD
132 try
133 {
136 std::cerr << "doing svd !" << std::endl ;
137 carto::VolumeRef< float > eigenVal = svd.doit( matVarCov );
138 std::cerr << "svd done !" << std::endl ;
139
140 /* cout << "Mat Var Cov Before sort = " << endl */
141 /* << matVarCov << endl ; */
142
143 svd.sort(matVarCov, eigenVal) ;
144
145
146 /* cout << "Mat Var Cov After sort = " << endl */
147 /* << matVarCov << endl ; */
148
149 _eigenVectors = matVarCov ;
150
151 // Temporaire
152 _eigenValues.clear() ;
153 _eigenValues.reserve(matVarCov->getSizeX());
154 for( int t = 0 ; t < matVarCov->getSizeX() ; ++t )
155 {
156 _eigenValues.push_back( eigenVal(t) ) ;
157 }
158 } // catch (user_interruption& e){
159// _validPca = false ;
160// }
161 catch( std::exception &e )
162 {
163 _validPca = false ;
164 if( individuals->getSizeX() > 0 && individuals->getSizeY() > 0
165 && individuals->getSizeZ() > 0 )
166 {
167 std::cerr << "invalid pca" << std::endl ;
168
169 }
170 else
171 std::cout << "empty indiv matrix" << std::endl ;
172 }
173}
174
bool _matricesComputed
Definition pca.h:91
carto::VolumeRef< float > _eigenVectors
Definition pca.h:101
std::vector< float > _mean
Definition pca.h:94
bool _validPca
Definition pca.h:89
std::vector< float > _var
Definition pca.h:95
bool _computed
Definition pca.h:90
void doIt(const carto::rc_ptr< carto::Volume< T > > &individuals)
Definition pca_d.h:60
bool _center
Definition pca.h:92
std::vector< float > _eigenValues
Definition pca.h:100
bool _normalize
Definition pca.h:93
Definition svd.h:59
void sort(carto::VolumeRef< T > &, carto::VolumeRef< T > &, carto::VolumeRef< T > *v=NULL)
sort the U and V matrices and the W vector in decreasing order
@ VectorOfSingularValues
Definition svd.h:65
carto::VolumeRef< T > doit(carto::VolumeRef< T > &, carto::VolumeRef< T > *v=NULL)
Singular Value Decomposition.
void setReturnType(SVDReturnType rt)
Definition svd.h:76
const T & at(long x, long y=0, long z=0, long t=0) const
int getSizeY() const
int getSizeX() const