ml - Weighting Random Forest (+ cross-validation)

None

Paramètres

ListOf_Input_Features_Image: ListOf( Volume 3D ) ( input )
ListOf_Input_Segmented_Image: ListOf( Graph ) ( input )
Input_Feature_Description: Text file ( optional, entrée )
PCA: Booléen ( input )
N_Principal_Components: Entier ( optional, input )
Alpha: Réel ( optional, input )
Weights: ListOf( Réel ) ( optional, input )
Weighted_Split: Booléen ( input )
Weighted_Voting: Booléen ( input )
Cross_Validation: Booléen ( optional, input )
K_Folds: Entier ( optional, input )
N_Trees: Entier ( input )
Output_Model: Any Type ( sortie )
Label_Of_Interest: Entier ( input )
Output_OOB_Decision: Text file ( sortie )
Append_Performance: Booléen ( input )
Output_Performance: Text file ( sortie )

Informations techniques

Toolbox : Bioprocessing

Niveau d'utilisateur : 0

Identifiant : ml_weighting_random_forest

Nom de fichier : brainvisa/toolboxes/bioprocessing/processes/research/toolbox/machine_learning/ml_toolbox/ml_weighting_random_forest.py

Supported file formats :

ListOf_Input_Features_Image :
gz compressed NIFTI-1 image, Aperio svs, DICOM image, Directory, ECAT i image, ECAT v image, FDF image, FreesurferMGH, FreesurferMGZ, GIS image, Hamamatsu ndpi, Hamamatsu vms, Hamamatsu vmu, JPEG image, Leica scn, MINC image, NIFTI-1 image, SPM image, Sakura svslide, TIFF image, TIFF image, TIFF(.tif) image, TIFF(.tif) image, Ventana bif, Zeiss czi, gz compressed MINC image, gz compressed NIFTI-1 image
ListOf_Input_Segmented_Image :
Graph and data, Graph and data
Input_Feature_Description :
Text file, Text file
Output_Model :
pickle file, pickle file
Output_OOB_Decision :
Text file, Text file
Output_Performance :
Text file, Text file