ml - Fast model generation and testing

None

Paramètres

ListOf_Input_Image: ListOf( Volume 3D ) ( input )
ListOf_Input_Segmented_Image: ListOf( Graph ) ( input )
Algorithm: Choice ( input )
Test_Size_Ratio: Réel ( input )
PCA: Booléen ( input )
N_Principal_Components: Entier ( optional, input )
Regularization_Parameter: Réel ( optional, input )
N_Random_Trees: Entier ( optional, input )
Output_Performance: Text file ( optional, sortie )
Output_Subset_Data: Text file ( optional, sortie )
Output_Model: Any Type ( optional, sortie )
ListOf_Output_Segmented_Image: ListOf( Volume 3D ) ( optional, output )

Informations techniques

Toolbox : Bioprocessing

Niveau d'utilisateur : 0

Identifiant : ml_fast_modeling

Nom de fichier : brainvisa/toolboxes/bioprocessing/processes/research/toolbox/machine_learning/ml_fast_modeling.py

Supported file formats :

ListOf_Input_Image :
gz compressed NIFTI-1 image, Aperio svs, DICOM image, Directory, ECAT i image, ECAT v image, FDF image, FreesurferMGH, FreesurferMGZ, GIS image, Hamamatsu ndpi, Hamamatsu vms, Hamamatsu vmu, JPEG image, Leica scn, MINC image, NIFTI-1 image, SPM image, Sakura svslide, TIFF image, TIFF image, TIFF(.tif) image, TIFF(.tif) image, Ventana bif, Zeiss czi, gz compressed MINC image, gz compressed NIFTI-1 image
ListOf_Input_Segmented_Image :
Graph and data, Graph and data
Output_Performance :
Text file, Text file
Output_Subset_Data :
Text file, Text file
Output_Model :
pickle file, pickle file
ListOf_Output_Segmented_Image :
gz compressed NIFTI-1 image, Aperio svs, DICOM image, Directory, ECAT i image, ECAT v image, FDF image, FreesurferMGH, FreesurferMGZ, GIS image, Hamamatsu ndpi, Hamamatsu vms, Hamamatsu vmu, JPEG image, Leica scn, MINC image, NIFTI-1 image, SPM image, Sakura svslide, TIFF image, TIFF image, TIFF(.tif) image, TIFF(.tif) image, Ventana bif, Zeiss czi, gz compressed MINC image, gz compressed NIFTI-1 image