ml - Weighted Random Forest image level cross-validation

None

Parameters

ListOf_Input_Features_Image: ListOf( 3D Volume ) ( input )
ListOf_Input_Segmented_Image: ListOf( Graph ) ( input )
Input_Feature_Description: Text file ( optional, input )
N_Principal_Components: Integer ( optional, input )
Alpha: Float ( optional, input )
Classes_Weights: ListOf( Float ) ( optional, input )
K_Folds: Integer ( input )
N_Trees: Integer ( input )
Append_Mean_Performance: Boolean ( input )
Mean_Performance: Text file ( output )
Output_CV_Performance: Text file ( optional, output )

Technical information

Toolbox : Bioprocessing

User level : 3

Identifier : ml_RandomForest_CV

File name : brainvisa/toolboxes/bioprocessing/processes/research/toolbox/machine_learning/ml_toolbox/ml_RandomForest_CV.py

Supported file formats :

ListOf_Input_Features_Image :
gz compressed NIFTI-1 image, Aperio svs, DICOM image, Directory, ECAT i image, ECAT v image, FDF image, FreesurferMGH, FreesurferMGZ, GIS image, Hamamatsu ndpi, Hamamatsu vms, Hamamatsu vmu, JPEG image, Leica scn, MINC image, NIFTI-1 image, SPM image, Sakura svslide, TIFF image, TIFF image, TIFF(.tif) image, TIFF(.tif) image, Ventana bif, Zeiss czi, gz compressed MINC image, gz compressed NIFTI-1 image
ListOf_Input_Segmented_Image :
Graph and data, Graph and data
Input_Feature_Description :
Text file, Text file
Mean_Performance :
Text file, Text file
Output_CV_Performance :
Text file, Text file