ml - Weighting Random Forest (+ cross-validation)

None

Parameters

ListOf_Input_Features_Image: ListOf( 3D Volume ) ( input )
ListOf_Input_Segmented_Image: ListOf( Graph ) ( input )
Input_Feature_Description: Text file ( optional, input )
PCA: Boolean ( input )
N_Principal_Components: Integer ( optional, input )
Alpha: Float ( optional, input )
Weights: ListOf( Float ) ( optional, input )
Weighted_Split: Boolean ( input )
Weighted_Voting: Boolean ( input )
Cross_Validation: Boolean ( optional, input )
K_Folds: Integer ( optional, input )
N_Trees: Integer ( input )
Output_Model: Any Type ( output )
Label_Of_Interest: Integer ( input )
Output_OOB_Decision: Text file ( output )
Append_Performance: Boolean ( input )
Output_Performance: Text file ( output )

Technical information

Toolbox : Bioprocessing

User level : 0

Identifier : ml_weighting_random_forest

File name : brainvisa/toolboxes/bioprocessing/processes/research/toolbox/machine_learning/ml_toolbox/ml_weighting_random_forest.py

Supported file formats :

ListOf_Input_Features_Image :
gz compressed NIFTI-1 image, Aperio svs, DICOM image, Directory, ECAT i image, ECAT v image, FDF image, FreesurferMGH, FreesurferMGZ, GIS image, Hamamatsu ndpi, Hamamatsu vms, Hamamatsu vmu, JPEG image, Leica scn, MINC image, NIFTI-1 image, SPM image, Sakura svslide, TIFF image, TIFF image, TIFF(.tif) image, TIFF(.tif) image, Ventana bif, Zeiss czi, gz compressed MINC image, gz compressed NIFTI-1 image
ListOf_Input_Segmented_Image :
Graph and data, Graph and data
Input_Feature_Description :
Text file, Text file
Output_Model :
pickle file, pickle file
Output_OOB_Decision :
Text file, Text file
Output_Performance :
Text file, Text file