Process to label a new graph using a 3D U-Net convolutional neural network.
The process can work using a GPU or on CPU. It requires a fair amount of RAM memory (about 4-5 GB). If not enough memory can be allocated, the process will abort with an error (thus will not hang the whole machine).
graph: Cortical folds graph ( input )input graph to segment
roots: Cortex Catchment Bassins ( input )root file corresponding to the input graph
model_file: Any Type ( input )file (.mdsm) storing neural network parameters
param_file: Any Type ( input )file (.json) storing the hyperparameters (cutting threshold)
skeleton: Cortex Skeleton ( input )skeleton file corresponding to the input graph
grey_white: Grey White Mask ( input )grey white mask corresponding to the input graph
hemi_cortex: CSF+GREY Mask ( input )grey+CSF mask corresponding to the input graph
white_mesh: Hemisphere White Mesh ( input )white surface corresponding to the input graph
pial_mesh: Hemisphere Mesh ( input )pial surface corresponding to the input graph
allow_multithreading: Boolean ( input )
labelled_graph: Labelled Cortical folds graph ( output )output labelled graph
cuda: Integer ( input )device on which to run the training(-1 for cpu, i>=0 for the i-th gpu)
fix_random_seed: Boolean ( input )Use same random sequence
use_capsul_completion: Boolean ( input )
edit_pipeline: Boolean ( input )
capsul_gui: Boolean ( input )
edit_study_config: Boolean ( input )
Toolbox : Morphologist
User level : 0
Identifier :
sulci_deep_labelingFile name :
brainvisa/toolboxes/morphologist/processes/Sulci/Recognition/sulci_deep_labeling.pySupported file formats :
graph :Graph and data, Graph and dataroots :gz compressed NIFTI-1 image, Aperio svs, DICOM image, Directory, ECAT i image, ECAT v image, FDF image, FreesurferMGH, FreesurferMGZ, GIS image, Hamamatsu ndpi, Hamamatsu vms, Hamamatsu vmu, JPEG image, Leica scn, MINC image, NIFTI-1 image, SPM image, Sakura svslide, TIFF image, TIFF image, TIFF(.tif) image, TIFF(.tif) image, Ventana bif, Zeiss czi, gz compressed MINC image, gz compressed NIFTI-1 imagemodel_file :mdsm file, mdsm fileparam_file :JSON file, JSON fileskeleton :gz compressed NIFTI-1 image, Aperio svs, DICOM image, Directory, ECAT i image, ECAT v image, FDF image, FreesurferMGH, FreesurferMGZ, GIS image, Hamamatsu ndpi, Hamamatsu vms, Hamamatsu vmu, JPEG image, Leica scn, MINC image, NIFTI-1 image, SPM image, Sakura svslide, TIFF image, TIFF image, TIFF(.tif) image, TIFF(.tif) image, Ventana bif, Zeiss czi, gz compressed MINC image, gz compressed NIFTI-1 imagegrey_white :gz compressed NIFTI-1 image, Aperio svs, DICOM image, Directory, ECAT i image, ECAT v image, FDF image, FreesurferMGH, FreesurferMGZ, GIS image, Hamamatsu ndpi, Hamamatsu vms, Hamamatsu vmu, JPEG image, Leica scn, MINC image, NIFTI-1 image, SPM image, Sakura svslide, TIFF image, TIFF image, TIFF(.tif) image, TIFF(.tif) image, Ventana bif, Zeiss czi, gz compressed MINC image, gz compressed NIFTI-1 imagehemi_cortex :gz compressed NIFTI-1 image, Aperio svs, DICOM image, Directory, ECAT i image, ECAT v image, FDF image, FreesurferMGH, FreesurferMGZ, GIS image, Hamamatsu ndpi, Hamamatsu vms, Hamamatsu vmu, JPEG image, Leica scn, MINC image, NIFTI-1 image, SPM image, Sakura svslide, TIFF image, TIFF image, TIFF(.tif) image, TIFF(.tif) image, Ventana bif, Zeiss czi, gz compressed MINC image, gz compressed NIFTI-1 imagewhite_mesh :GIFTI file, GIFTI file, MESH mesh, MNI OBJ mesh, PLY mesh, TRI meshpial_mesh :GIFTI file, GIFTI file, MESH mesh, MNI OBJ mesh, PLY mesh, TRI meshlabelled_graph :Graph and data, Graph and data