Compute the cortical thickness along Laplace field lines from a classification volume, using Eulerian advection (slightly more precise than upwinding, but much slower)
classif: Any Type ( entrée )classification image of the cortex (100 inside, 0 in CSF, 200 in white matter)
verbosity: Entier ( optional, input )Verbosity level
laplace_precision: Nombre ( optional, input )target maximum relative error in first-order finite differences
laplace_typical_cortical_thickness: Nombre ( optional, input )typical thickness of the cortex (mm), used for accelerating convergence
advection_step_size: Nombre ( optional, input )size of the advection step (millimetres)
advection_max_dist: Nombre ( optional, input )maximum advection distance (millimetres)
equidistant_depth: String ( optional, input )
thickness_image: Any Type ( sortie )result of the arithmetic
use_capsul_completion: Booléen ( input )
edit_pipeline: Booléen ( input )
capsul_gui: Booléen ( input )
edit_study_config: Booléen ( input )
Toolbox : highres-cortex
Niveau d'utilisateur : 1
Identifiant :
thickness_adv
Nom de fichier :
brainvisa/toolboxes/highres_cortex/processes/thickness_adv.py
Supported file formats :
classif :Répertoire, BMP image, Répertoire, ECAT i image, ECAT v image, Fichier, GIF image, GIS image, JPEG image, MINC image, MNG image, NIFTI-1 image, PBM image, PGM image, PNG image, PPM image, SPM image, TIFF image, TIFF(.tif) image, VIDA image, XBM image, XPM image, gz compressed MINC image, gz compressed NIFTI-1 imagethickness_image :Répertoire, BMP image, Répertoire, ECAT i image, ECAT v image, Fichier, GIF image, GIS image, JPEG image, MINC image, MNG image, NIFTI-1 image, PBM image, PGM image, PNG image, PPM image, SPM image, TIFF image, TIFF(.tif) image, VIDA image, XBM image, XPM image, gz compressed MINC image, gz compressed NIFTI-1 image