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Abstract. In this paper, we study the recognition of about 60 sulcal
structures over a new T1 MRI database of 62 subjects. It continues our
previous work [7] and more specifically extends the localization model
of sulci (SPAM). This model is sensitive to the chosen common space
during the group study. Thus, we focus the current work on refining this
space using registration techniques. Nevertheless, we also benefit from
the sulcuswise localization variability knowledge to constrain the nor-
malization. So, we propose a consistent Bayesian framework to jointly
identify and register sulci, with two complementary normalization tech-
niques and their detailed integration in the model: a global rigid trans-
formation followed by a piecewise rigid-one, sulcus after sulcus. Thereby,
we have improved the sulci labeling quality to a global recognition rate
of 86%, and moreover obtained a basic but robust registration technique.

Keywords: cortical folds labeling, sulci, registration, SPAM, EM.

1 Introduction

Group studies involve one of the most intriguing and challenging problem of brain
imaging. Indeed, the human cortex is highly convoluted by series of intricated
folds and vary strongly from one individual to another. Cortical anatomy, fibers
of white matter and functional activity are known to be interwoven in some way
still to be defined. Therefore, matching of anatomical structures is fundamental
to hugely reduce the intersubject anatomo-functional variability.

Fortunately, some of the largest sulci are relatively stable either in their lo-
calization, their shape or according to their neighbouring folds [7]. Moreover,
the deepest part of the main sulci are rather well-localized and organized [16,2].
Therefore, the major sulci are often used either to assess the quality of a nor-
malization or as landmarks for co-registration. Indeed, sulci labels and brain
normalization are interrelated. Most of the time, normalization and sulci label-
ing are two well-separated sequential steps. Either the first step [17] provides a
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common space to the second [7,6,15], or the second yields constraints to the first
one [8]. We face here a kind of chicken-egg dilemma. Thus, most methods choose
to break the loop and use a weaker approach to replace one of the two steps.
They either use a normalization process based only on MRI intensities or geo-
metrical features which can not disambiguate some folds, or use a poor common
space to estimate sulci variability for labeling purpose. Nevertheless, we can go
further and use the best of the two steps. In fact, iterative answers [19] can be
build to overcome the dilemma to some extent. In the following, we propose such
a method in a full Bayesian framework (close to the model proposed in [20]) to
jointly find sulci labels and a robust registration to a well-defined common space.

This paper extends the sulcuswise localization models and the Bayesian frame-
work introduced in our previous works [7]. Here, we kept aside the structural
aspect of our works (in particular the study of neighbouring sulci relations [6])
to focus on the specific topic of joint sulci recognition and registration.

2 Database

The number of subjects in the learning database and the quality of the sulcal
delineation across them is a crucial component to correctly guide the model de-
sign and enhance the performance of the recognition system. Beyond the largest
folds, no ground truth exists. Indeed, the definition of the secondary and tertiary
folds is a research subject in its own right. For that reason, many incoherences
remained in the labeling of the database used previously [7]. Thus, an in-depth
study of the cortical folds has been carried out. As a result, a difficult work,
several months long, has been done in this direction to carefully question and
correct our previous database, and extend it up to 62 subjects (all with left and
right hemispheres). The first and third authors of this paper have jointly labeled
the whole database and compared their opinions to justify their choices. Hence,
manual sulci identification has been made as homogeneous and consistent as
possible, based only on anatomical information extracted from T1 MRI. To that
end, a set of 63 labels is used on the left hemisphere and 62 on the right one.
The rules used to specify the labeling are based on the sulcal roots theory [2].

Several heterogeneous databases (our former database, a diffusion-dedicated
database [3], a twins database [4] and some subjects from the ICBM database)
were grouped from several sites: SHFJ, CHU La Pitié Salpêtrière, CHU La
Timone, McGill (4 different 1.5T scanners with various spatial resolution). Most
of the subjects are right-handed men, between 25 and 35 years old.

A collection of tools (released in the Brainvisa software [1]) has been developed
to help the manual labeling, speed up the process and quickly compare many
brains together.

We briefly remind here what we mean by sulcus. We used the Brainvisa
[1] anatomical segmentation pipeline [5] to extract the cortical folds. We get
a raw brain negative mold which is skeletonized and over-segmented according
to depth, curvature and topological criteria. Thereby, we obtained a collection
of elementary sulcal pieces to be labeled. Lastly, a sulcus is a set of such sulcal



178 M. Perrot et al.

Fig. 1. Sulcal patterns variability: 3 manually labeled brains from our new database

pieces with the same label. Remember that the challenging part of sulci labeling
is to stick the sulcal pieces together to give one sulcus, or to find the boundaries
between sulci.

3 Models and Methods

Previously, we introduced a model to automatically identify sulci from localiza-
tion information [7]. This labeling method and the model estimation are based
on the strong assumption that all subjects (from training and testing databases)
live in a common space. Hence, the more accurate the chosen data normalization
process, the more efficient this model. We had used the well-known Talairach
coordinate system [12]. This system is based on the alignement of the anterior
and posterior commissures (AC-PC) and the interhemispheric plane, followed
by the scaling of the brain boundaries along the three cardinal axes with the
Talairach atlas.

In this paper, our main goal is still to infer a full labeling L = {Li}i∈E of
brain folds. Namely, we have to find the label Li of each elementary anatomical
structure i to be labeled (in our application sulcal pieces: see section 2 for de-
tails). Here, E denotes the whole set of these structures. The labeling is based on
localization information D = {Di}i∈E (in our case, Di is the set of the 3D coor-
dinates of the voxels of the structure i from the MRI data, but other information
could be considered). These data are expressed in a common referential space
(for instance the Talairach one) thanks to a transformation from the subject
space and defined by the parameter Θ (equal to θTal in the case of the Talairach
space). Hence, the MAP (Maximum A Posteriori) formulation of labeling from
our previous model can be rewriten as follows:

P (Labeling|Data) = P (L|DΘ = θT al) ∝ P (D|LΘ = θT al)P (L|Θ = θTal) (1)

In the same way, we can reconsider the formulation of the estimation of the
localization model M (in this paper we use SPAM models, see section 3.4 for
details) from a training database A, by the introduction of normalization pa-
rameters (from subject space to the Talairach one): θa,tal for each subject a ∈ A:

P (Model|Training Set) = P (M|{DaLa; Θa = θa,tal}a∈A) (2)

where each subscript a stands for data specific to the subject a.
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In the following, we first introduce the general principles of a natural extension
of this model which considers the re-estimation of normalization parameters (for
global and sulcuswise rigid registration techniques). Then, the method details
are given for the joint registration and labeling, and for the joint registration
and model estimation. Finally, the method is derived for a specific sulcuswise
localization model used in our experiments : the SPAM model.

3.1 Normalization and Registration

The Talairach coordinate system is really reliable only for the deepest anatomical
structures (thalamus, putamen, caudate nucleus...) and quite inaccurate for the
cortical folds. Besides, in the considered database (see section 2), AC-PC aligne-
ments have been done manually. In this paper, we propose to automatically
define a better common space by transforming each subject using registration
techniques with respect to our localization models. The pratical application of
this idea is not straightforward and depends on the chosen normalization, since
the registration is done between a subject and a probabilistic model rather than
a mean subject or an atlas. In the following sections, we will state how to intro-
duce the normalization step in a meaningful way to extend our previous model,
estimate it from a training database, and use it to help the labeling process on
a new unlabeled subject.

In this context, we choose to further study two specific complementary reg-
istration methods. The first one is rigid and defined by global parameters θg =
(Rg, tg), where Rg is a rotation matrix and tg a translation vector. It will pro-
vide a refined version of the Talairach space. Its optimization does not need any
specific prior thanks to the strong constraints defined by the labelwise localiza-
tion models. It also provides a good initialization for any second step non-linear
registration.

To this end, many methods could be used and integrated in the considered
model of this paper. Nevertheless, state of the art diffeomorphic registration
techniques are extremely time consuming. Do not forget that our first goal is
not to provide a perfect registration but to infer sulci labels. So we can afford
the use of simpler methods if it is done with enough care.

As a second step, we suggest a simple non-linear registration method that
extends naturally the global approach to a sulcuswise one. It is defined by a
set of parameters θs = {θs,l}l∈L = {(Rs,l, ts,l)}l∈L with one rigid registration
for each label l. Obviously, without constraints, some counterintuitive phenom-
ena can occur because this registration is non-diffeomorphic. In fact, various
structures could cross each other after registration and result in a poor local la-
beling. Besides, some neighbouring sulci have similar shapes and could be easily
confused without strong enough constraints. This method has severe drawbacks
that can be hugely reduced and controled with the use of a well chosen refer-
ential space for initialization and strong priors to control the range of available
local transformations. To that end, we used independent priors for each label.
The translations are estimated by a full-covariance 3D-Gaussian. For the rota-
tions, we split their prior in 2 components based on the standard vector-rotation
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parametrization. We have chosen generalizations of multivariate Gaussian dis-
tributions: Von Mises distribution for the rotation angle, Kent or Bingham dis-
tributions for the direction of the rotation (see [11] for an overview). The local
rigid transformations of a point x depends on the chosen reference point g. In-
deed, R · x + t = R · (x − g) + (t − R · g − g) + g = R · xg + tg + g with xg

and tg expressed in the local coordinate system defined by g. The case g = 0
corresponds to the global arbitrary coordinates. To be as sharp as possible, the
translation prior needs to be estimated from tg with a well chosen reference g.
A natural choice, for a given label, is to use the gravity center of all sulci with
this label over the database, with coordinates expressed in the normalized space
of the model.

These approaches are quite well integrated in the following models and lead
to drastic simplifications of the optimization scheme. They allow the use of a
simplified model without any statistical dependency, which results in a fast and
efficient optimization method (see eq. 9).

3.2 Joint Registration and Labeling

Here we suppose that the model M is known. Either, it may has been learned
with (according to the method suggested in the section 3.3) or without (according
to our previous work [7]) normalization refinement. Thereby, in this section, all
probabilities P (·) are defined implicitely given M. The following formula extends
the equation 1 to find jointly the labels l and the registration parameters θ:

l∗, θ∗ = argmax
l,θ

P (L = lΘ = θ|D) (3)

Direct optimization of this quantity is difficult and time consuming. However,
we can consider other quantities of interest as the marginal probabilities over
Θ and L: P (L|D) and P (Θ|D) respectively. According to our model design
(independence assumptions and registration methods), it induces simplifications.
Thus, we choose to first optimize the registration θ regarding L as hidden labels,
and then optimize labels under the best θ∗ previously obtained:
⎧
⎨

⎩

θ∗= argmax
θ

P (Θ=θ|D)= argmax
θ

P (θ)
∑

L=l P (L = l|θ)P (D|L = l; θ)

l∗ =argmax
l

P (L= l|D; Θ=θ∗)=argmax
l

P (D|L = l; Θ = θ∗)P (L = l|Θ=θ∗)

(4)
θ∗ can be estimated by the iterative Expectation Maximization (EM) algorithm
[9] which reaches a local optimum from a well-chosen initialization θ(0):

θ(n+1) = argmax
θ

Q
(
θ
∣
∣
∣θ(n)

)
(5)

with

Q
(
θ
∣
∣
∣θ(n)

)
= EL

[
log(P (DLθ))

∣
∣
∣Dθ(n)

]

=
∑

L=l P
(
L = l

∣
∣
∣Dθ(n)

)
log [P (D|L = lθ)P (L = l|θ)P (θ)]

(6)

where EL [·] stands for the expectation over L.
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Currently, we will consider a widely spread assumption of conditional inde-
pendence of all {Di}i∈E given L. Besides, the labels prior P (L) does not depend
on the transformation θ, and so we derive the above expression for global rigid
registration:

Qg

(
θg

∣
∣
∣θ(n)

g

)
=
∑

l∈L

∑

i∈E
P
(
Li = li

∣
∣
∣Diθ

(n)
g

)
log [P (Di|Liθg)P (Li = li)P (θg)]

(7)
The optimization of θ is now regarded as a standard parameter optimization
within the framework of mixture models. Indeed, P (Li = li|θ) is the prior of the
model li defined by the likelihood P (Di|Li = liθ) (in our case these generative
models are SPAM: see section 3.4). Finally, the {Di}i∈E are realizations of the
mixture model.

For local registration, we supposed P (θs) =
∏

l∈L P (θs,l), where each θs,l

stands for sulcuswise local registration parameters.

Qs

(
θs

∣
∣
∣θ(n)

s

)
=
∑

l∈L

∑

i∈E
P
(
Li = l

∣
∣
∣Diθ

(n)
s,l

)
log [P (Di|Liθs,l)P (Li)P (θs,l)] (8)

θ∗s =

{

argmax
θs,l

∑

i∈E
P
(
Li = l

∣
∣
∣Diθ

(n)
s,l

)
log [P (Di|Liθs,l)P (θs,l)]

}

l∈L
(9)

Hence, the optimization of θ follows repeated sequences of local marginal poste-
riors P (Li|Diθ) estimations (E-step) which yields weights for the registrations
optimizations (M-step). The weights can be read into links between structures to
be labeled and the mixture model components. For the sulcuswise case, thanks
to the independence assumption of the {θs,l}l∈L, the registration optimization
is done independently for each label l.

Lastly, a full labeling l∗ is obtained by MAP as in our previous works [7] but
after applying the transformation induced by the parameter θ∗:

l∗ = {l∗i }i∈E =
{

argmax
li

P (Di|Li = li; Θ = θ∗)P (Li = li|Θ = θ∗)
}

i∈E
(10)

3.3 Joint Registration and Model Estimation

We are interested here by the supervised estimation of our model parameters
M. We supposed a training database A is avalaible (in this work, we use the
database described in section 2) with one known label La,i for each sulcal piece
i and each subject a ∈ A. Previously, the model estimation was built from the
Talairach space. Now, we supposed that the registration parameters θa (that
move each subject a ∈ A from the Talairach space to a new refined common
space) are unknown and have to be computed at the same time as the model
M. To generalize the previous formulation (see equation 2), the ideal measure
to optimize is then expressed as below:

m∗, {θ∗a}a∈A = argmax
m,{θa}a∈A

P (M = m{Θa = θa}a∈A|{DaLa}a∈A) (11)
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One way to approximate the maximization of this quantity is to alternate the
optimization of the model parameters and that of the registration parameters:
⎧
⎪⎪⎨

⎪⎪⎩

m(n) = argmax
m

P

(

M = m
∣
∣
∣{DaLa}a∈A;

{
Θa = θ

(n)
a

}

a∈A

)

{
θ
(n+1)
a

}

a∈A
= argmax

{θa}a∈A
P
({Θa = θa}a∈A|{DaLa}a∈A;M = m(n)

) (12)

Under the independence assumption of subjectwise registration parameters {θa}
and those of sulcal pieces, the optimization becomes:
⎧
⎪⎪⎨

⎪⎪⎩

m
(n)
l = argmax

ml

P

(

Ml = ml

∣
∣
∣
∣
∣
{Da,iLa,i = l} a∈A

i∈Ea,l

;
{
Θa = θ

(n)
a

}

a∈A

)

θ
(n+1)
a = argmax

θa

P
(
Da|La; Θa = θaM = m(n)

)
P
(
Θa = θa|La;M = m(n)

)

(13)
with M = {Ml}l∈L, where Ml is the set of parameters monitoring the genera-
tive model of sulcus l, and Ea,l the set of sulcal pieces of subject a restricted to
those with the label l.

The optimization of M reduces to normalizing each subject a based on their
respective transformation θa and compute a standard model estimation in this
reference space (see section 3.4 for SPAM estimation). For its part, the opti-
misation of the registration parameters θa boils down to find the best transfor-
mation to fit the data to the given model M = m(n) constrainted by the prior
P
(
Θa = θa|La;M = m(n)

)
.

3.4 SPAM and Registration

The model presented in this paper is based on a mixture of sulcuswise generative
models based on localization data. So far, no assumption has been made on these
models. In this section, we will show how to use a specific model to represent
this information: the SPAM model (Statistical Probabilistic Anatomy Map [13])
already used in our previous work [7] and extending older sulci analysis of [14].
This model gives voxelwise probabilities. In our current context, the likelihood
is defined through a transformation θ and for a given label l, the probability of
finding one structure at the spatial position x is given by:

PSPAM(x|L = lθM) =
(Kσ ∗ fl)(Φθ(x))

∑
x∈Ω(Kσ ∗ fl)(Φθ(x))

(14)

with Kσ ∗ f standing for the convolution of f and Kσ which is a 3-dimensional
spherical Gaussian kernel of covariance σ2Id, fl(x) is the frequency of appear-
ance of label L at position x over the database (with {{fl(x)}x∈Ω, σ} ∈ M) and
Φθ is a transformation function to transform x spatial coordinates from an initial
reference space through the registration parameterized by θ. For a given sulcal
piece i, its set of voxel coordinates Vi, with voxelwise indepence assumption, the
joint likelihood writes:

PSPAM(Vi|lθ) =
∏

x∈Vi

PSP AM(x|lθ) 1
|Vi| (15)
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(a) (b) (c)

︸ ︷︷ ︸

62 central sulci

(a) (b) (c)

︸ ︷︷ ︸

SPAM models

Fig. 2. Effects of constrained registration on SPAM model estimation: localization un-
certainties are reduced from (a) to (c). Models are estimated from (a) Talairach space,
(b) with global registration, (c) with local registration. SPAM models are represented
conveniently by 3 nested isosurfaces of the probability corresponding to 30, 60 and 80%
of the whole probability mass.

with |Vi| the number of voxels of the sulci which behaves like a normalization
factor. Indeed, during the segmentation stage of folds, sulcal pieces of various
size are obtained. Hence, this quantity erases size effects and gives comparable
posteriors (used to weight the registration during the EM).

In this paper we consider only rigid transformations: a global one with Φgθ(x)
= Rg ·x+tg and local ones with Φs,lθ(x) = Rs,l ·x+ts,l, for each label l. During
the registration stage, we have to optimize the parameter set θ. A SPAM model
is non-parametric and currently represented as a 3D-volume of probabilities.
Thus, analytical optimization is not easy. In this paper, we choose to use the
well-known Powell’s method [10] to cover the 6-parameter space made up of w
(vector-rotation parametrization of R) and the translation t to maximize the
matching. See figure 2 to notice the refinement of the raw SPAM model (fig. 2
(a)) by the use of registration techniques.

Lastly, the SPAM model is introduced in our joint labeling and registration
framework, replacing P (Di = di|Li = li; θ) by PSPAM(Vi|L = li; θ) with Vi = di.

4 Results and Discussion

The following results are based on the new database of 62 subjects: left and right
hemispheres (versus only 26 right hemispheres before) presented in section 2. All
estimations are obtained from a leave-one-out scheme. Namely, for each subject a
full model estimation (SPAM, variability estimation of registration parameters:
rotations and translations, label priors) is computed from all subjects but the
tested one. Then, the unseen subject is labeled from its related model. Thereby,
the following results are much more reliable than our previous ones [7].

In the following, we consider three error rates (see equation 16) ranging be-
tween 0 and 100%. The two first rates are global error measures where each
sulcuswise contribution is weighted by its size. The first Emass is kept here for
comparison purposes with our old results [7]. The second one ESI draws inspira-
tion from the measure called similarity index (SI [18]). It is more comprehensive
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100%

0%
(a) (a) - (c) (c) - (e)

25%

-25%

Fig. 3. Left: Leave-one-out mean local error rates Elocal of a model (a) ranging between
0 and 100%. Right: Leave-one-out mean local error rates differences between two models
named by a letter (begining of section 4) to highlight the enhancements. (a) - (c) shows
improvements due to a full use of global registration with labeling according to model
(a). (c) - (e) shows improvements of the best local registration with labeling according
to model (c).

than the first one only based on false positive errors. It also removes errors
shared by several sulci (extra or missing sulcal pieces) by counting them only
once. Quite on the contrary, the last Elocal(l) is local and rather draconian. It
takes all errors involving a given label l into account (false positive and true
negative) without redundancy correction:

Emass=

∑

l∈L
F P(l)

∑

l∈L
F P (l)+T P (l)

ESI=
∑

l∈L
wl

F P (l)+F N(l)
F P(l)+F N(l)+2∗TP (l) Elocal(l)=

F P (l)+F N(l)
F P(l)+F N(l)+T P(l)

(16)
where wl is the true size of the sulcus l normalized by the sum of the sizes of all
sulci, FP (l), FN(l) and TP (l) stands respectively for false postive, false negative
and true positive errors of label l. Each of these measures is computed comparing
the manual labels to the automatic ones, and weighted so that each sulcal piece
counts as much as its size.

In the following, five models will be discussed and named by letters for a
better understanding. (a) basic SPAM model estimated from Talairach, with
independent labeling from Talairach (eq. 2). (b) basic SPAM model estimated
from Talairach, with joint labeling and global rigid registration from Talairach
(eq. 7). (c) globally refined SPAM model (eq. 13) from Talairach, with joint
labeling and global rigid registration from Talairach (eq. 7). (d) locally refined
SPAM model (eq. 13) from Talairach, with joint labeling and local rigid reg-
istration from Talairach (eq. 9). (e) is like (d) but the reference space is not
Talairach but the one estimated by a first model estimation or labeling with
model (c) (see section 3.1).

The basic SPAM model (a) already gives low error rates. Since, the labeling
is done for each sulcal piece independently, severe errors remain (huge sulci parts
missing, double outlines). We have tested previously [7] and with some success
the use of a Markov field [6] to fix these issues, but this is beyond the scope of the
current paper. We suggest here that some of these errors can be considered as
registration errors or referential inadequacy between the subject and the model.
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(a) (c) (e)

100%

0%

Fig. 4. Some effects of joint labeling and registration on an arbitrary subject which
gives bad recognition of the posterior cingulate fissure label (post.C.F) with model
(a). Top: local posterior probabilities of the post.C.F mapped on each sulcal piece of
the subject. Middle: estimated SPAM models mixed with their respective automatic
and registred sulci of the considered subject: look at the enhancement on the post.C.F
(yellow color). Bottom: zoomed and cropped version of the previous row. Letters denote
models fully described at the begining of section 4: (a) basic SPAM models, (c) with
global registration and (e) with local registration. Note that the labeling are almost
the same between (c) and (e), but with model (e) the matching is better.

In fact, global error rates are significantly reduced by using the joint labeling
and global registration (see table 1 (b)). Moreover, the errors decrease again,
with the use of the globally refined SPAM models (c). The enhancements are
quite uniformly distributed over the brain (see figure 3). Thus, the two joint
approaches at learning and testing stages are effective. In the case of the non-
linear transformation, each local registration is constrainted independently. So
the more the referential space is reliable, the stronger the constraints are. As
expected, initializing the local methods (model estimation and labeling) with the
registration result of the global one (e) gives sharper and stronger constraints

Table 1. Leave-one-out mean (over 62 subjects) percentage of global SI and mass error
rates (and their standard deviations between parenthesis) for all models listed at the
begining of section 4

No registration Global registration local registration
(a) (b) (c) (d) (e)

ESI
Left 17.55 (5.93) 15.27 (2.74) 14.59 (2.88) 16.79 (4.35) 14.22 (2.96)

Right 16.83 (3.77) 14.70 (3.09) 13.97 (2.91) 15.61 (3.72) 13.48 (3.13)

Emass
Left 16.64 (3.69) 14.56 (2.54) 14.01 (2.62) 16.61 (4.17) 14.11 (2.79)

Right 15.96 (3.66) 13.95 (2.98) 13.37 (2.82) 15.29 (3.51) 13.30 (2.99)
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than the direct use of the Talairach space (d) which actually worsen the results.
Unfortunately, this step does not bring about any global significant improvement
(see table 1 (c) versus (e)), but rather some local ones at the medial frontal part
of the brain for instance (see figure 3). Indeed, the labeling quality is nearly
the same, but its reliability is enhanced since the local posteriors probabilities
P (Li|DiΘ) better fits the true labeling (see figure 4, top row). Namely, the model
is more confident in the given labeling (see figure 4, bottom row).

5 Conclusion and Perspectives

In this paper, we have proposed new models extending our previous works [7]
coupling sulci labeling and constrainted registration in a common framework. We
have presented two complementary rigid-based registration techniques: one to re-
duce global localization uncertainties, and another with one local transformation
per sulcus. The proposed methods give significant improvements. Their resulting
labelings are almost the same but the local approach yields more reliable pos-
terior probabilities which may be helpful for further processings (morphometry
studies for instance). Originally, we were interested in the labeling enhancement.
Finally, our models also provide a registration method constrainted by reliable
anatomical landmarks: the sulci. On the contrary of most landmark-based nor-
malization methods, in our case no labeling is needed to set the constraints: the
process is fully automatic. It would be interesting to compare the registration
capacities of these methods with standard ones.

Many statistical independence assumptions have been made during the model
design, so there is still room for improvement. In fact, the labeling of a sulcal piece
should be done in relation with its neighbourhood: a Markov field can do the
job (as in our previous work [7] [6], but registration has now to be included). We
can also consider registration methods constrainted so that the local anatomical
organization of folds are preserved in some way. Nevertheless, more complicated
models may need adapted approximations to run properly. These extensions are
partially complementary and may benefit from each other.

Acknowledgements. We are indebted to Cyril Poupon and Philippe Pinel for
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