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Abstract

Brain mapping techniques pair similar anatomical information across individuals. In this context, spatial normalization is mainly
used to reduce intersubject differences to improve comparisons. These techniques may benefit from anatomically identified land-
marks useful to drive the registration. Automatic labeling, classification or segmentation techniques provide such labels. Most
of these approaches depend strongly on normalization, as much as normalization depends on landmark accuracy. We propose
in this paper a coherent Bayesian framework to automatically identify approximately 60 sulcal labels per hemisphere based on
a probabilistic atlas (a mixture of  models: Statistical Probabilistic Anatomy Map) estimating simultaneously normalization
parameters. This way, the labelization method provides also with no extra computational costs a new automatically constrained
registration of sulcal structures. We have limited our study to global affine and piecewise affine registration. The suggested global
affine approach outperforms significantly standard affine intensity-based normalization techniques in term of sulci alignments. Fur-
ther, by combining global and local joint labeling, a final mean recognition rate of 86% has been obtained with much more reliable
labeling posterior probabilities. The different methods described in this paper have been integrated since the release version 3.2.1
of the BrainVISA software platform (Rivière et al., 2009).
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1. Introduction

In neuroimaging, many challenging methodological or neu-
roscientific works regard group studies that summarize, repeat
or generalize individual results at group levels. Brain mapping
techniques have been widely explored in this way and aim to
identify and pair similar structures among individuals. They
cover a wide range of applications, from detection of reliable
landmarks to understanding of brain functions, through charac-
terization of neurodevelopmental disorders. The interpretation
of group studies depends widely on the quality of such map-
ping.

In this respect, two popular approaches are commonly con-
sidered: 1) normalization and 2) identification techniques (in-
cluding labeling or segmentation). The former one warps stud-
ied subjects to a common space allowing comparisons of sim-
ilar anatomical structures or functional patterns, whereas the
latter directly recognizes the structures from their own spe-
cific «signature» (intensities, morphometry or their mutual re-
lations). The two methods are complementary and are often
combined in the literature. However, this combination has been,
thus far, limited to sequential concatenation of the two opera-
tions (both orders appear in the literature). To exploit at full the
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synergy of the two techniques, we propose in this study to use
them simultaneously.

Historically, registration-based approaches consist in nor-
malizing all studied data into a common space through anatomi-
cally sensible transformations (affine, constrained non-linear or
diffeomorphic ones). For a detailed survey on registration tech-
niques, the reader is referred to Maintz and Viergever (1998);
Gholipour et al. (2007). Herein, we focus on studies dedicated
to sulcal data.

Initially, most registration algorithms were iconic, driven by
voxelwise intensities of MRI data. Afterwards, surface-based
approaches appeared (Fischl et al., 2004; Tosun and Prince,
2008) favouring multiscale features like the curvature or the
cortical depth (distance to brain hull). Since these approaches
can not distinguish neighbouring folds with similar geometric
characteristics, group-identified structures were added as con-
straints. The latter became popular recently. Regarding sulci,
the landmark contraints can be defined as point-based (Caunce
and Taylor, 1998; Chui et al., 1999; Chui and Rangarajan, 2000;
Lohmann and von Cramon., 2000), surface-based (Joshi et al.,
2005; Lui et al., 2007; Thompson et al., 2000; Van Essen, 2005)
(popular representations are spherical and flat mapping) or vol-
umetric (Auzias et al., 2009; Cachier et al., 2001; Collins et al.,
1995, 1998). Typically, landmarks are initially labeled manu-
ally, which is time-consuming and also introduces human-based
errors. On top, the increasing amount of data renders manual
identification difficult in practice.
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Automatic identification of anatomical structures results
from segmentation and classification methods. In the case of
cortical structures as opposed to subcortical ones, these meth-
ods are generally used one after another: the cortical sulci are
first extracted, then labeled. These approaches comprise graphi-
cal modeling of structured anatomical data (Rivière et al., 2002;
Shi et al., 2008, 2009; Vivodtzev et al., 2005; Yang and Kruggel,
2007, 2009), spatial localization of structures from a common
space (Le Goualher et al., 1998; Lohmann and von Cramon.,
2000; Perrot et al., 2008) and surface-based methods taking into
account the geometry of the cortex, especially through curva-
ture information (Fischl et al., 2004; Tosun et al., 2003; Yeo
et al., 2010).

Another family of methods, intermediate between normal-
ization and identification of structures, warp anatomical atlases
towards individual MRIs, to transfer the labels to each subject’s
image. There has been in the last decade an increasing interest
for probabilistic atlases (Allassonnière et al., 2007; Ashburner
and Friston, 2005; De Craene et al., 2005; Joshi et al., 2004;
Mazziotta et al., 1995; Shattuck et al., 2008; Thompson and
Toga, 1997). These atlases explain better the inter-individual
variability, and pay a special attention to unbiased atlas build-
ing (independent of chosen reference subject).

The atlas accuracy depends greatly on coregistration qual-
ity (Lyttelton et al., 2007), and better structural alignments are
obtained onto more reliable templates with more anatomical
landmarks. Very few papers took advantage of the latter. In
the context of sulci labeling, Vaillant and Davatzikos (1999)
explore iterative strategies to reconsider and hierarchically re-
fine structure identification using registration. Recently, Ash-
burner and Friston (2005); Pohl et al. (2006); Yeo et al. (2008)
have fully addressed these issues within Bayesian frameworks
and proposed joint registration and classification (segmentation
or labeling) estimation. The current paper follows this gen-
eral Bayesian formulation but introduces novelties regarding
anatomical variability modeling, offers techniques to estimate
the latter, and before all puts forth the notion of registration
priors. Indeed, Ashburner and Friston (2005) constrained the
transformation parameters with a Gaussian prior with covari-
ance parameters derived from the Laplacian of the deformation
field. Yeo et al. (2008) used edgewise Gaussian priors on each
mesh triangles, scaled accordingly by edge length, whereas
Pohl et al. (2006) empirically estimated Gaussian priors from a
training database. In this paper, we follow this latter approach,
refining registration parameters to limit the range of possible
transformations.

This paper is an extension of our previous work (Perrot et al.,
2008; Rivière et al., 2002) where sulci recognition has been
considered from a structural angles through Markovian mod-
eling of cortical folding neighbourhoods. Here, we propose to
focus on the use of localization features.

This paper is organized as follows. Section 2 describes a
database of 62 subjects designed for the current study. Then,
section 3 refers to an introductory model of the sulcal variabil-
ity, which is refined in section 4 with a joint probabilistic sulcal-
based atlas estimation, and joint sulci labeling and normaliza-
tion. Lastly, in section 5, cross-validated results are presented

Figure 1: Sulcal patterns variability: 3 manually labeled brains from our new
database of 62 subjects. Each color represents a label: 63 on the left hemi-
sphere, 62 on the right one. Even 3 brains allow to picture the sulcal variability
extent according to many criterions: size, shape, branches, orientation, topol-
ogy of sulcal components...

and demonstrate enhancements achieved with such approaches.

2. Database

Human cortices are highly convoluted by series of intricated
folds and vary strongly from one individual to another. Only the
largest and deepest folds have led to a clear consensus amongst
experts of sulcal anatomy regarding their characteristic pattern
in terms of shape or spatial relations. It refers to the primary
folds, appearing at the early stage of brain maturation. These
elementary folds (Dubois et al., 2008), namely the seeds which
will become the future sulci are rather well localized. Beyond,
in the matter of secondary and tertiary folds, no ground truth is
available: several theories (Lohmann and von Cramon., 2000;
Ono et al., 1990; Régis et al., 2005) with many shared principles
coexist. Basically, they claim that the cortical sulci are made of
elementary folds with different orientations depending on the
subject considered. We believe that the study of brain matura-
tion in regard to white fiber structuration, as well as functional
activity in regards to cortical patterns will help to refine and
merge theses theories.

From the analysis of previous works (Perrot et al., 2008) we
point out that sulcal variability modeling provides some ways to
measure and give insights into the reliability of sulci definitions.
In the latter work, we used -based localization models (see
3.3 for details on the inference principles and 4.5 for details
on the localization model) to analyze the quality of the man-
ual labeling of our training database of 26 subjects. It allows
us to detect missing or erroneous labels. Besides, the database
was not large enough to claim to be representative of the high
inter-subjects variability of sulcal patterns. In fact, our previ-
ous studies have resulted in a quite good understanding of the
largest folds, but a limited or even a poor comprehension of the
more variable ones. In this respect, the sulci nomenclature has
been slightly reworked and refined (adding, deleting, splitting
or merging labels) in the face of 62 subjects (left and right hemi-
spheres). Indeed, some previous labels were found to be unreli-
able, hence they have been removed and merged with other la-
bels. Conversely, we identified reliable sub-structures in some
labels which we decided to split in several parts. As a result,
the labeling consistency has been improved across subjects and
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between the two hemispheres, even for the smaller folds. Nev-
ertheless, some limited uncertainties remain and will need the
study of many more subjects. However, the new data amount
we have at our disposal is enough to suggest some enhance-
ments to sulci modeling and, in consequence, to automatic la-
beling.

During several months of work, these 62 subjects (including
the previous 26 ones) have been labeled or relabeled by two
people trained to this task and working in tandem. Brains have
been compared to each other several times in groups of a dozen
of subjects. For that purpose, we have extended Anatomist, an
interactive visualization software provided by the BrainVISA
(Rivière et al., 2009) software platform, to perform dedicated
convenient group visualizations. Thus, each labeling choice
has been discussed at length in order to enhance the consis-
tency. Left and right hemispheres have been labeled one after
the other: the whole right hemisphere followed by the left one
(and interestingly, we noticed that the resulting models present
strong symmetry properties in figure 3). Thus, we hope to have
avoided some bias risks. During the labeling process, we have
noticed some known results about brain asymmetries: the Wer-
nicke and Broca areas of the left hemisphere, involved in lan-
guage skills are more variable than their corresponding area on
the other hemisphere. Besides, basal folds (collateral fissure,
lingual sulcus, occipito temporal sulci...) seem to be less vari-
able and so, easier to recognize on the left hemispheres.

The sulci nomenclature and the labeling principles used to
build this database are based on the sulcal roots theory (Régis
et al., 2005). These sulcal roots are the locations of the first
signs of folding for each sulcus during brain growth and may
be linked to white fibers maturation. We believe that these
elementary folds are reliable for brain matching. Beyond ge-
netic factors, the remaining complexity and variability of adult
brain folds could be rooted in the diversity of environmental
stimuli experienced during brain maturation. Thus, its devel-
opment would depend on the partially chaotic structuration of
complex neural networks with many feedback loops at micro-
scopic scales which induces huge differences at macroscopic
scales.

Because of our current limited understanding of sulcal
anatomy and segmentation limitations, the set of labels we have
used has been limited to the most reliable sulcal roots (for in-
stance 5 labels are used to model the Pre-Central sulcus), and
groups of neighbouring folds for the more variable and less un-
derstood areas (for instance one label only is used for the oc-
cipital folds). That way, we defined a set of 63 labels on the
left hemisphere and 62 on the right one (see table 3 and fig-
ure 12 for label locations and definitions). The unpaired label
is localized between the posterior branch of the Sylvian fissure
and the bottom of the post-central sulcus. Sulcal roots surely
have some strong connections with the concept of sulcal pits
(Lohmann et al., 2008) that cover the deepest parts of cortical
folds, except for those which have been pushed outward by the
development of neighbouring folds.

Whatever the chosen labeling rules, there are many ways to
represent folding data. In our representation, we consider only
the sulcal parts of the cortical folds, which are better defined

and bounded than the gyral ones. In fact, the gyri are reputed
to be even more difficult to identify than the sulci, and on top
of that, they are delineated by the latter. The cortical folds are
represented by a collection of sulcal pieces each made up of
a voxels set. These structures are obtained through the Brain-
VISA (Rivière et al., 2009) anatomical segmentation pipeline
(Mangin et al., 1995) (see also (Rivière et al., 2002) and (Man-
gin et al., 2004) for more recent descriptions) which extracts the
cortical folds from T1 MRI. First the image inhomogeneities
are corrected thanks to a smooth multiplicative field that mini-
mizes the entropy of the resulting intensity distribution. Then,
a scale-space analysis of gray and white matters histograms,
helped by Markovian regularization and morphological tech-
niques, is used to segment the brain, gray/white matters from
Cerebrospinal fluid (), separate both hemispheres, and en-
sure that they have a spherical topology. Lastly, a watershed al-
gorithm is used to skeletonize the , thus preserving the initial
topology. According to depth, curvature and topological crite-
rions, the resulting structure is over-segmented in elementary
folds, a kind of 3D ribbon without any breaks or branches, to
assure, as far as possible, that at most one label is expressed on
a sulcal piece. Thus, we call sulcus a set of such sulcal pieces
with the same label. As shown further, the main issue about
sulci recognition is to group the sulcal pieces with each other to
find sulci. This representation allows to reduce greatly the num-
ber of structures to be labeled compared to most surface-based
or voxel-based approaches.

To build this larger sulcal-based dataset, several heteroge-
neous databases: our former database, a diffusion-dedicated
database (Poupon et al., 2006), a twins database (Pinel et al.,
2007) and some subjects from the ICBM database were
grouped from several sites: the  neuroimaging labora-
tory (Service Hospitalier Fréderic Joliot, France), La Pitié
Salpêtrière Hospital (France), La Timone Hospital (France),
McGill University (Canada). Four different 1.5T scanners with
various spatial resolutions (about 1mm3 ± 0.16) and imaging
protocols were used to prevent most of the possible bias and
insure better generalization properties. Most of the subjects are
right-handed men, between 25 and 35 years old. The origi-
nal goal of these databases are not necessarily linked to sulcal
studies, but all contained the needed T1 MRI. Besides, the ad-
ditional data also includes functional and diffusion data which
should be put in correlation with each other in future works. We
think that the data heterogeneity has contributed to the robust-
ness of our resulting models.

All the preparation done on this database (including extend-
ing, cleaning, matching, comparing...) has been supported by
the BrainVISA software (Rivière et al., 2009) initiative. For the
circumstance, we have developed efficient ways to manually la-
bel cortical folds, from scratch or from a first automatic labeling
(an operating mode which is faster but requires more attention
to avoid bias in favor of the model previously used) based on
only 3 actions: selection of folding structures, copy and paste
of labels. Lastly, we have built a tool to certify that each sub-
ject appears at most once in the database, otherwise the robust
leave-one-out scheme of evaluation used in our results (section
5) would be strongly biased.
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3. Standard Labeling Based on Localization

In the following, we present a basic simplified model us-
ing only localization information defined from a fixed common
space. Subjects are normalized to the latter with registration
techniques (section 3.1). Then, the remaining localization vari-
ability is modeled thanks to  models (section 3.2). In this
context, we describe how to estimate such models and label
sulci on new subjects (section 3.3).

3.1. Normalization to Find a Common Space

Many normalization techniques could be considered to de-
fine a common space to study sulcal data. These methods prolif-
erate in the literature with various degrees of complexity (from
linear to diffeomorphic ones) or with various information (from
raw image to labeled anatomical landmarks). Thus, we inten-
tionally restrict our study to standard  intensity-based affine
techniques, easy to compare with those proposed in this paper
since they have the same degrees of freedom.

First, we have used a variant of the Talairach coordinate sys-
tem (Talairach and Tournoux, 1988) as defined in the Brain-
VISA (Rivière et al., 2009) anatomical segmentation pipeline.
The transformation from the subject space to the Talairach
space is affine. Its orientation and origin are defined by the man-
ual alignment of the anterior and posterior commissures (AC-
PC). Then the interhemispheric plane and scaling factors are au-
tomatically found by matching brain boundaries along the three
cardinal axes with the Talairach atlas. This coordinate system
was originally designed to align the deepest anatomical struc-
tures (thalamus, putamen, caudate nucleus...) which are rather
invariant spatially. With respect to cortical structures, their vari-
ability is much larger, but potentially overestimated from such
an unadapted referential.

We have also tried the Baladin software (Ourselin et al.,
2000) dedicated to multimodal image registration, restricted to
an affine transformation here. This method is quite reliable be-
cause it is based on a multi-scale block matching strategy de-
signed to capture both small and huge displacements. More-
over, an optimal similarity measure, the correlation coefficient,
is used to match blocks in pairs between the two images. Lastly,
the affine transformation results from the optimization of robust
estimators (least trimmed squares) that discard outliers from the
process. This method was originally invented to deal with vol-
ume reconstruction from unregistered sequential slices, but it is
also rather efficient for whole volume registration.

For comparison, we have tested the widely used affine reg-
istration provided by the SPM8b software (Ashburner et al.,
1997). Its main idea is to find the registration parameters that
minimize the sum of squared differences between the 2 im-
ages to be matched in a Bayesian framework with priors taking
into consideration shape and size variability of standard human
heads (distinctly visible on the considered template).

The co-registration of more than 2 training subjects with Bal-
adin or  methods is handled by the registration to a tem-
plate (or a mean subject) as destination image. To that end, we

choose the widely used  template named 152 (Mazz-
iotta et al., 2001) which results of the averaging of 152 sub-
jects registered with affine transformation on the 305 tem-
plate (Evans et al., 1993). This template and others built from
affine transformations are rather similar: only a raw shape of
each hemisphere and skull can be discerned because of the high
inter-individual cortical variability which blurs the folds.

Lastly, we have looked at the affine version of the 
(Collins et al., 1994, 1995) software (used to build the 305
template), but we did not succeed in getting improvements on
the quality of sulcal alignments so detailed results have not been
specified further.

3.2. Localization Model: 

After standard affine normalization to a standard template or
to a known common space, cortical sulci of a group of subjects
are more or less aligned with each other. That is the reason
why sulcal variability can be modeled to some extent through
estimating the spatial presence probability of finding a sulcus at
a given voxel. Namely, we are interested in a voxelwise mea-
sure that assesses the probability of being owned by a specific
sulcus. To that end, we explore the use of the  model (Sta-
tistical Probabilistic Anatomy Map (Evans et al., 1994)), firstly
used in the context of sulci modeling in past studies (Le Goual-
her et al., 1998). For each label, the principle is to count how
many subjects have a sulcus going through a given location.
These voxelwise frequencies are denoted for a given label l, by
a function fl(x) depending on the location parameter x. These
measures are reliable only if many subjects are used. With
the database presented previously (section 2), we obtain rather
well-defined models for most sulcal labels. For the most vari-
able sulci, many more subjects may be needed. A good way to
overcome this difficulty is to model spatial uncertainties during
frequency estimations. To do so we use a soft isotropic Gaus-
sian kernel Kσ with a standard deviation σ equal to 2 mm to
blur the raw frequency map. The kernel width σ has been set
arbitrarily and should be discussed in future refinements. This
value is not too large to keep sharp  models on reliable
sulcal labels, and not too small to reduce the expression of indi-
vidual evidences in frequency maps. Lastly, the probability of
finding one given structure with label l at the spatial location x
writes:

Pspam(x|L=l) =
(Kσ ∗ fl)(x)∑

x∈Ω
(Kσ ∗ fl)(x)

(1)

with Kσ ∗ f standing for the convolution of f and Kσ. Here
Ω denotes the whole space over which the expression is nor-
malized. In theory Ω is R3 the whole spatial 3D space. In
pratical way, we use one bounding box per label to limit the
definition domain of these likelihoods and save memory. 
models are encoded as a 3D volume, centered on the distribu-
tion core and bounded by negligible values, where each voxel
stores the related likelihood. The normalization factor denotes
that we consider each  model, dedicated to a given sulcus,
as a generative model of voxels positions, so the probability in-
tegrates to 1 over Ω.
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Figure 2: Comparison between standard affine normalization (SPM, Talairach, baladin, all in affine mode) and proposed sulci-based registration (with global and
local sulcuswise co-registration) on two major sulci, top: the central sulcus, bottom: parieto-occipital fissure. Left: 62 registered sulci. Right: 3D convenient
representations of related SPAM models with their related entropy measure: a lower entropy means a sharper model and less uncertainty. We used 3 nested
isosurfaces corresponding to 30, 60 and 80% of the whole probability mass, computed by integrating the probability from the highest likelihoods to the lowest. The
registration template used for SPM and baladin registration is the ICBM152, so the comparison is straighforward. About the three other methods, each defines its
own space but the variation means are quite close because the global registration refines the Talairach one and the local one refines the global one: so they can also
be compared between each other. Of course, the non-linear sulcuswise local registration gives always the best match. About affine approaches, SPM and Talairach
give the worst central sulcus alignements and our global method the best. For the parieto-occipital, Talairach is the worst, whereas baladin and our global approach
are the best.

The above formula (equation 1) is also known from density
estimation field as the Parzen window method (Parzen, 1962)
and more generally known as kernel density estimation. Ac-
cording to this point of view, better estimators can be consid-
ered. This study focuses only on this formulation, others could
be part of future improvements.

Our representation of cortical sulci is based on sulcal pieces
(section 2) which are elementary segments with contiguous
voxels, weak curvature, without any hole or branch. Each sul-
cal piece can take at most one label, so we have focused on the
probability of having such a label on structures in their whole-
ness rather than on single voxels. Thus, the achievement of a
full generative model relies on the modeling of the joint prob-
ability of a set of locations. The true answer to this question
is rather difficult and may need complex model design which
may be hard to estimate. Actually, the generative aspect is use-
less here since our method does not need any sampling: it is
restricted to fixed real folding structures where only a way to
compare likelihoods from one label to another is needed. Thus,
approximations can be explored: a sensible voxels indepen-
dency assumption has been considered in the following. Thus,
the probability of finding the label l on one sulcal piece made
up of the voxels set X is given by:

Pspam(X|l) =
∏
x∈X

Pspam(x|l)
1
|X| (2)

with |X| the number of voxels of the sulci which behaves like a
normalization factor. To explain why we need to normalize geo-
metrically the voxelwise likelikoods, let us consider two sulcal
pieces, one twice the size of the other, and a spurious voxel-
wise multinomial distribution of labels in such way that labels
frequencies are invariant spatially. In this situation, each like-
lihood computed on the larger sulcal piece is the square of the
smallest one, so labels compare quite differently (only labels

sorting is preserved). The larger the sulcal piece is, the more
contrasted the posterior probabilities are. Without this normal-
ization factor, all posteriors would be null except for one label
which would have a posterior equal to 1. In other words, the
model and so the labeling would be sensitive to scale which is
not satisfactory. Moreover, further studied models need com-
parable posteriors over sulcal pieces because they appear as
weights during the registration step (see equation 10).

At sulcal piece scale, the proposed summarized probability
does not refer any more to a generative model. In fact, breaks,
inherent in sulcal pieces are not modeled here. Therefore, our
model is quite sensible to the quality of folding segmentation
(section 2 for details on segmentation).

Whether previously described standard normalization meth-
ods or further described sulci-based ones are considered, all
transformations are affine or piecewise affine. Thus, model
estimation from this common space must take into account sam-
pling issues since sulci are made of voxels of which positions
are expressed from subjects coordinate system. Therefore, once
sulci are transformed, then linear interpolation is used to as-
sess the effective contribution to its respective frequency map.
On the other hand, when likelihoods are estimated we merely
round the transformed coordinates using the affine transforma-
tion. The visual effects of various co-registration of 62 subjects
on sulci alignments can be seen in details for 5 different meth-
ods on two selected sulci in figure 2 and for the 3 main meth-
ods on all sulci in figure 3. In the subsequent sections, to use
 as a concrete model in place of the generic sulcal piece
probabilities, consider the following definition which takes into
account the affine registration parameters A (linear part) and t
(the translation vector):

P (Di=Xi|Li,Θ=(A, t)) , Pspam

(
{A · x + t}x∈Xi

)
(3)

where Di denotes the parameter for localization data related to
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the sulcal piece i. The coordinates of the voxels set Xi are ex-
pressed in the subject space, so {Ax + t}x∈Xi is expressed in the
chosen normalization space. Here, Θ is a metaparameter for all
possible registration parameters, which does not depend on the
label parameter Li. This definition introduces how to use 
with affine registration.

3.3. Sulci Modeling and Labeling from a Common Space

When a suitable common space has been defined, where sulci
alignments are rather good and their variations reduced, sim-
ple and effective models can be defined to recognize sulci la-
bels. Previously, we introduced the  model which is able
to provide the likelihood of having a sulcal piece at a given lo-
cation given a label. From this model (or similar ones) based
on strongly localized information, a straightforward and larger
model can be designed making the most of the strong assump-
tion introduced earlier: the statistical independency between
sulcal pieces.

The principal goal we are after is the labeling of sulcal pieces
from an unseen subject from a test database. Thus, if the nor-
malization parameters Θ are known from a previous step, we
seek to infer a labeling L from localized information D. Un-
known labels and measured structural data are expressed over
the set E of sulcal pieces in such way that L = {Li}i∈E and
D = {Di}i∈E, each sulcal piece with its own local data Di (in our
case, the set of the 3D coordinates of the voxels of the structure
i from the MRI data, but other information could be consid-
ered) and its single label Li. The labeling inference is based on
an empirical modelM comprised of all information which can
help to model the inter-individual cortical variability, includ-
ing labels prior P(L) and likelihood P(D|L,Θ) (in our case 
models). From a Bayesian framework, this inference is based
on a mere application of the Bayes rule (to lighten probabilistic
formula, random variables and their respective concrete values
will be confused when no ambiguity is encountered):

P(Labeling|Data) = P(L|D,Θ;M)
∝ P(D|L,Θ;M)P(L|Θ;M)
∝

∏
i∈E

P(Di|Li,Θ;M)P(Li|M)
(4)

Here, P(L|Θ;M) represents the labeling prior, namely the
chance we have to face the labeling L before any localization
data D is observed. Thus, we assumed that this prior is inde-
pendent of parameters Θ since only D is sensitive to subject
referential. Since all sulcal pieces are independent, this for-
mula stands equally for  (Maximum A Posteriori) or 
(marginal posterior mode) Bayesian risks. This means that each
local independent labeling problem has the same importance in
the eyes of the model.

Thanks to the assumed independencies, the labeling consists
in a set of local labelings where each sulcal model is ques-
tioned to assess the likelihood of having rather one label or
another. Lastly, the most probable label is kept. Moreover,
local posterior probabilities can also be computed by normal-
izing P(Di |Li=l,Θ;M)P(Li=l|M) over all labels l ∈ L, which qualifies
to what extent the model is confident in its labeling choice.

Sulcal data are rather complex and not fully understood, that
is the reason why the sulcal model can not be set a priori
but must be estimated empirically from a training database A.
From a Bayesian point of view, the estimation of model pa-
rameters ( voxelwise likelihood values or labels prior) is
expressed as following:

P(Model|Training Set)
= P(M|{Da, La,Θa}a∈A)
∝

∏
a∈A

P(Da|La,Θa;Ml)︸                ︷︷                ︸
localization models

P(La|Θa;Mp)︸           ︷︷           ︸
labels prior

P(M|Θa)︸    ︷︷    ︸
model prior

(5)

where each subscript a stands for data specific to the subject
a,Ml andMp stands respectively for parameters specific to lo-
calization models and labels prior. Here each transformation Θa

moves a subject a from its own input space to a common space
and is considered to be known, so the model parametersM are
estimated under this hypothesis. Thus, this optimization is bro-
ken up in three parts: the optimization of localization models,
labels prior and the model prior. The only worthwhile model
prior we used is a Dirach prior on the kernel width σ set to 2
mm during  estimation. Thus,Ml andMp can be estimated
independently. In the same way, model parameters specific to a
given sulcal label can be optimized on their own side (section
3.2 for details on  estimation). About the labeling prior,
we consider that each local labeling is independent from others
since most structural information is contained in Da, except the
model structure: the segmentation in sulcal pieces which is laid
aside in the current paper. Details on how these probabilities
are estimated can be found in the appendix A.

This labeling scheme takes advantage of strong and reliable
localization information modeled by . Moreover, shape in-
formation is modeled to some extent for the largest sulci. So
far, we consider the normalization as a first step before any fur-
ther analysis, so its choice is determinant for the quality of the
model and so the quality of the labeling (see  registration
column of table 2 and section 5 for detailed explanations).

4. Joint Labeling and Spatial Normalization

None of the 3 standard normalization methods seen previ-
ously (Talairach, , Baladin) can claim to provide an opti-
mal affine transformation according to sulci alignment, because
they may not discriminate neighbouring folds from each other.
Therefore, the introduction of anatomical information, through
sulcal models like , in the registration process should re-
move most ambiguities. Conversely, the referential choice is
essential to reduce as far as possible the anatomical variability
and make the comparison of a subject to a sulcal model easier.
Both considered information types (transformation to a com-
mon space and identification of anatomical structure) are of in-
terest for each other. Bayesian formulation allows us to answer
elegantly to this question, but registration parameters optimiza-
tion must be reworked to be included in this framework. About
the registration part, the main idea is to replace the  tem-
plate by the sulcal probabilistic model (section 3.3) which can
be seen as a sulcuswise refined template.
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Figure 3: Lateral and medial views of -based localization models for left and right hemispheres, built from 62 subjects (see section 2 for details on the database).
We used 3D convenient representations for each SPAM models based on 2 nested isosurfaces corresponding to 30 and 60% of the whole probability mass, computed
by integrating the probability from the highest likelihoods to the lowest. Talairach-: basic  learned from Talairach space. global-:  learned jointly
with a global rigid co-registration of subjects from Talairach. local-:  learned jointly with a local rigid co-registration of sulci after applying first the
global- model. These models are further described at the begining of section 5.
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646.83 634.30

633.54 622.25

599.88 589.41

11.85

7.60

Figure 4: Lateral and medial views of local entropies of models:
∫

x pl(x)log (pl(x)) dx with pl(x) the density of probability for sulcus l at location x, mapped on
their respective -based models for left and right hemispheres (see above figure 3 for details on the models). Their related cumulative entropy (sum of sulcuswise
entropy) is specified between lateral and medial views of the same hemisphere. A lower entropy means sharper sulcal models and less localization uncertainty.
Entropies of global- are lower than Talairach-. The local- has even lower entropies.
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Following these ideas, we will re-consider the arbitrary and
a priori chosen normalization space made in the previous sec-
tion. Basically, we are looking for the common space given
rise to the best sulcal variability reduction. Thus, we propose
a way to refine an initial common space according to the pro-
posed sulci model to improve both sulcal models and labeling
through a Bayesian framework close to the one defined in Pohl
et al. (2006) or Yeo et al. (2008) for joint registration and seg-
mentation purposes.

In the following, two main registration methods have been
considered in section 4.1: the first with one affine or rigid trans-
formation (called global transformation), the second with sul-
cuswise rigid transformation (called local transformation). In
this context, the labeling process is presented in section 4.2
and the modeling estimation in section 4.3. Finally, additional
details are given on priors used to constrain the normalization
steps (section 4.4) and on specificities with regard to mod-
els in a normalization context (section 4.5).

4.1. Transformations

4.1.1. One Global Transformation: Rigid or Affine
The global transformation is defined by only two parameters

(Ag, tg) = θg, where Ag is a nonsingular matrix and tg a trans-
lation vector. Here, g subscripts stand for global approach. Ag

can be broken down into three intelligible components thanks
to singular value decomposition (): Ag = UgDgV t

g, with Ug

and Vg two rotation matrices and Dg a diagonal matrix of scal-
ing components. V t

g defines the plane along which the scal-
ing factors are applied (which are expected to align principal
axes of the brain along the canonical axes after optimization as-
suming the largest scaling deformations followed them). UgV t

g
represents the rigid part of the transformation. Affine transfor-
mations are controlled by 12 parameters (3 for each rotation,
3 for scaling and 3 for translation): it includes the composi-
tion of translation, rotation, scaling and shearing. Our study
also focuses on registrations restricted to rigid transformations
(keeping aside the scaling matrix Dg), defined by only 6 pa-
rameters (3 for rotation, 3 for translation). This leads to more
constrained transformations, that are much easier and faster to
optimize.

4.1.2. Sulcuswise Local Rigid Transformations
In this article, we explore a natural extension of the previ-

ous global registration (see differences between equation 11 and
13). Rather than one global affine or rigid transformation, a
collection of local rigid transformations is considered: one per
sulcus, denoted by the following parameters θs =

{
θs,l

}
l∈L ={

(Rs,l, ts,l)
}
l∈L. Here, s subscripts stand for sulcuswise method

and l for the respective labels. We limit our study to local rigid
transformations because, locally, affine ones may provide neg-
ligible profits with additional computing costs.

The proposed sulcuswise constrained registration, be it
global or local, can be controlled by additional priors over avail-
able transformations (section 4.4). Obviously, in the case of the
non-linear method these priors are vital as detailed further.

4.2. Joint Registration and Labeling
We assume in this section that we have already learned

a model M of sulcal localization variability from a training
database. Either, it has been estimated from a given a priori
common space (section 3.1 for standard normalization tech-
niques and section 3.3 for sulci model estimation from a given
space) or the common space and other model parameters have
been optimized together. In this section, the reference to the
modelM is implicit and so not specified, since all probabilities
are defined givenM.

Our goal here is to find the best sulcal labeling l of an un-
seen subject from a test database (namely the subject has not
been used during the model estimation step). In the same time,
we are looking for the best registration θ (limited in our experi-
ments to global affine and sulcuswise local affine ones) in order
to maximize the matching between the model and the unlabeled
subject, which following a Bayesian formulation writes:

l∗, θ∗ = argmax
l,θ

P(L=l,Θ=θ|D) (6)

Solving straightforwardly this equation is quite hard since all
parameters are optimized at the same time whereas the opti-
mized formula may present many local maxima. However, this
probability can be integrated along some parameters, so as to
take the fullest account of their uncertainty rather than their
principal mode. This leads to consider the following marginal
probabilities: P(L|D) or P(Θ|D) which, once optimized, should
give close solutions since the studied probabilities are rather
sharp. Ideally, we should prefer P(L|D) since it favours the
labeling point of view taking into account all measured uncer-
tainties over the unknown transformation θ:

P(L|D) ∝
∫

P(D|L,Θ=θ)P(L|Θ=θ)P(θ)dθ (7)

The transformation parameters θ live in a continus space since
we deal with the compositions of rotations, scaling factors and
translation vectors. Therefore, we should compute labeling for
all possible θ values to estimate posteriors P(Θ=θ|L,D), essen-
tials for the optimization, which is impossible as it is since the
considered space is continuous. Thus additional modeling and
reduction would be needed (using Markov chain monte Carlo
MCMC approaches for instance).

Therefore, the other marginal probability P(Θ|D) seems eas-
ier to handle since it provides some mathematical reductions.
This time, this measure is dedicated to the optimization of reg-
istration parameters θ taking all labeling uncertainties into ac-
count. Therefore, this method leads to a robust registration
technique constrained by hidden sulcal labels (unknown but in-
ferred from sulcal models). Then, the labeling is optimized un-
der the best θ∗ previously obtained:

θ∗ = argmax
θ

P(Θ=θ|D)

= argmax
θ

P(θ)
∑

L=l P(L=l|θ)P(D|L=l, θ)

l∗ = argmax
l

P(L=l|D,Θ=θ∗)

= argmax
l

P(D|L=l,Θ=θ∗)P(L=l|Θ=θ∗)

(8)
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The optimization of parameters under hidden variables can be
assessed through the Expectation Maximization () algorithm
(Dempster et al., 1977). This method starts from a suitable
initialization of the parameters to be optimized. In our case,
the parameters are given by a first registration step as those
described in section 3.1 for instance. Moreover, our joint ap-
proach with global registration can be used to initialize a sec-
ond one with local registration. The  method is iterative and
improves the considered probability at each step, by first com-
puting the posteriors probabilities P(L=l|D,Θ) for each possible
labeling l. That is |L||E| combinations, with |L| the number of
labels and |E| the number of sulcal pieces on the considered sub-
ject, which represents about 101000 for 62 labels and 250 sulcal
pieces. Secondly, these posteriors are used as weights during
parameters refinement. Lastly, the process leads parameters to
a local maximum of the probability of interest. The scheme is
the following:

θ(n+1) = argmax
θ

Q
(
θ
∣∣∣∣θ(n)

)
(9)

with

Q
(
θ
∣∣∣∣θ(n)

)
= EL

[
log(P(D, L, θ))

∣∣∣∣D, θ(n)
]

=
∑
L=l

w(n)
l log [P(D|L=l, θ)P(L=l|θ)P(θ)] (10)

where EL [·|·] stands for the expectation over L given known in-
formation, and w(n)

l =P
(
L=l,

∣∣∣D,θ(n)
)
. The summation is over all pos-

sible labelings l.

4.2.1. Global Approach
Now, we will propose a global affine or rigid registration de-

rived from this framework. Rather than assuming strong statis-
tical dependencies between observed data D, we used the ra-
tional assumption of conditionnal independence of data {Di}i∈E
given the labeling L. Besides, as detailed before, the labels prior
does not depend on the transformation θ and their statistical in-
dependence over sulcal pieces is also assumed. Then, the 
version for global registration writes:

Qg

(
θg

∣∣∣∣θ(n)
g

)
= log

[
P(θg)

]
+∑

i∈E

∑
Li=l

P
(
Li=l

∣∣∣∣Di, θ
(n)
g

)
log

[
P(Di|Li=l, θg)P(Li=l)

]
(11)

Here, the expectation step () constists in computing local pos-
teriors P

(
Li=l

∣∣∣Di,θ
(n)
g

)
for each sulcal piece and each label under

a known transformation θ(n)
g . Namely, we have to apply the

scheme described in section 3.3. These posteriors measure how
the model is confident on a given labeling and weight the contri-
bution of each sulcal model during the maximization step ().
Since sulcal models are quite localized, on each sulcal piece
most posterior probabilities are null, so only a few labels drive
the registration. These weights behave like force constants of
many springs linking sulcal pieces and sulcal models together.

Readers familiar with mixture models have surely recognized
an almost standard parameters optimization within this frame-
work. Here, sulcal models (in this paper, we used  models,

see section 3.2) are mixed together. The only subtlety is that all
model parameters are fixed and defined up to an affine registra-
tion.

4.2.2. Local Approach
Starting again from equation 10, if we consider that the

whole registration θs is made up of independent transforma-
tions θs,l (where s subscript for sulcuswise), one dedicated to
each label (in our case one rigid transformation per label is con-
sidered), the  algorithm writes:

Qs

(
θs

∣∣∣∣θ(n)
s

)
= log

[
P(θs,l)

]
+∑

l∈L

∑
i∈E

P
(
Li=l

∣∣∣∣Di, θ
(n)
s,l

)
log

[
P(Di|Li=l, θs,l)P(Li=l)

]
(12)

with P(θs) =
∏

l∈L P(θs,l).
This time, labelwise assessment can be uncorrelated and so

the optimization can be done separately:

θ∗s =

argmax
θs,l

∑
i∈E

P
(
Li=l

∣∣∣∣Di, θ
(n)
s,l

)
log

[
P(Di|Li, θs,l)P(θs,l)

]
ł∈L
(13)

Since labelwise local registrations are supposed to be indepen-
dent whereas in reality they are not, the details of the optimiza-
tion process may be counterintuitive. The process starts from a
common space where all local transformations are equal. One
more time, posterior probabilities provide weights to drive the
registration step, but this time each optimization yields a differ-
ent transformation. Virtually, we obtained as much transformed
brains (with the related rigid transformation) as labels since la-
bels are unknown. In the following E step, likelihoods of a
given label is obtained by mixing each transformed brain with
its related sulcal model. Posteriors are obtained after normal-
ization as following:

P(Li=l|Di, θ
(n)
s ) =

P
(
Di|Li=l, θ(n)

s,l

)
P(Li=l)∑

li∈L
P

(
Di|Li=li, θ

(n)
s,li

)
P(Li=li)

(14)

since P
(
Di|Li=li,

{
θ(n)

s,li

}
l∈L

)
= P

(
Di|Li=li, θ

(n)
s,li

)
. Namely the like-

lihood of a sulcal piece i of having the label l depends only on
the transformation dedicated to this label.

4.2.3. Final Labeling
Be it for global or local approach, once an optimal value θ∗

has been reached for registration parameters, a labeling is in-
ferred as previously (section 3.3 for details) but this time, after
applying the transformation induced by the parameter θ∗:

l∗ = {l∗i }i∈E

=

{
argmax

li
P (Di|Li=li,Θ=θ∗) P (Li=li|Θ=θ∗)

}
i∈E

(15)

4.3. Joint Registration and Model Estimation
The previous section gives some ways to correct remaining

localization uncertainties following a normalization step while
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inferring sulcal labels. Similar uncertainties may exist within
the model estimation process, so we believe similar improve-
ments are reachable. Now, the estimation of the sulcal model
M, presented earlier in section 3.3 (see in particular the equa-
tion 5), will be refined to also optimize the choice of subjects
common space. From a training database A (in this work, we
use the database described in section 2), this space is described
by a set of unknown registration parameters θa (that moves the
subject a from its own space to this common space). In this
context, for each training subject a, labels La,i of each sulcal
piece i are known. Thus, the ideal Bayesian formulation of this
problem is to find the best model parameters m∗ and registration
parameters θa for each training subject as below:

m∗, {θ∗a}a∈A = argmax
m,{θa}a∈A

P(M=m, {Θa=θa}a∈A|{Da, La}a∈A)

(16)
A common approximation used to create MRI templates con-
sists in first starting from an initialization and then alternating
between building a template from registered subjects and sub-
jectwise registration to this template, and so on. This idea is
easily adaptable to our needs. From a raw referential space
(provided by a first normalization step, see section 3.1 for de-
tails, represented by a set of transformations

{
θ(0)

a

}
a∈A

), a first sul-
cal model ( in our case) is computed. Then each subject
is registered on it in a Bayesian sense (see below) which de-
termines a refined common space from which the model is as-
sessed again. This approach suggests to separate and alternate
optimization ofM and {θa}a∈A:

m(n) = argmax
m

P
(
M=m

∣∣∣∣ {Da, La}a∈A ,
{
Θa=θ(n)

a

}
a∈A

)
{
θ(n+1)

a

}
a∈A

= argmax
{θa}a∈A

P
(
{Θa=θa}a∈A

∣∣∣∣ {Da, La}a∈A ;M=m(n)
)

(17)
The considered localization model M is made up of one sub-
model Ml per label l where each can be estimated separately.
Thus, for a given submodelMl only sulcal pieces related to the
same label are considered (denoted by La,i=l):

m(n)
l = argmax

ml

∏
a ∈ A
i ∈ Ea,l

P
(
Da,i

∣∣∣∣La,i=l,Θa=θ(n)
a ;M=m

)
P

(
La,i=l

∣∣∣∣M=m
)

θ(n+1)
a = argmax

θa

P
(
Da

∣∣∣∣La,Θa=θa;M=m(n)
)

P
(
Θa=θa

∣∣∣∣M=m(n)
)(18)

where Ea,l stands for the set of sulcal pieces of subject a re-
stricted to those with the label l. We have omitted the model
prior P(M=m) which only fixed internal parameters of the cho-
sen localization model (see spam estimation in section 3.2).
Once again we consider that our label prior P(La,i=l|M=m) is in-
dependent from registration parameters, so it can be estimated
during the precomputing phase as described in appendix A.

Now, let us consider the optimization of a given subject a
(the subscript a, θa and m(n) references are omitted here since
they are not ambiguous) and take the logarithm of the second

subject/input referential model/destination referential

Figure 5: Two optimal referentials for the considered sulci with their respective
minimal translation. Here, the red to white gradient shapes suggest an artificial
2D  sulcal model, whereas the grey shapes represent a sulcus at several
steps of a rigid registration. Left: the sulcus is first rotated by R around its
center and then translated with t. Right: this shows the inverse transformation
from the previous referential translated by t (which is more or less at the model
center); so the sulcus starts from the model, then it is rotated around its center
(this center is defined in the body of section 4.4) by Rt and then translated with
−t.

line of equation 18:

log [P (D|L,Θ;M) P (Θ|M)]

=
∑
i∈E

log [P (Di|Li,Θ;M) P (Θ|M)]

=
∑
i∈E

∑
Li=l

δl,li log [P (Di|Li=l,Θ;M) P (Θ|M)]

(19)

where δl,li stands for the Kronecker delta which equals 0 if l , li
(labels are different) and 1 if l = li (labels are the same). Here,
l denotes the sum iterator whereas li is the true label (remember
that labels are known on the training database). After rewriting
the optimized expression we recognize the  step of equation
10 for joint labeling and registration. In other words, with suit-
able weights (posterior probabilities modeling uncertainties or
strong knowledge of a known labeling) the same algorithm can
be used to compute both.

Lastly, this iterative scheme gives a local maximum of the
probability expressed in equation 16, close to the optimum if
the initialization is good enough, which seems to be our situa-
tion.

4.4. Registration Priors
The joint approaches proposed for cortical folds labeling

(section 4.2) and model refinement (section 4.3) include reg-
istration steps. Both cases are constrained by priors on regis-
tration parameters θ which limit the range of available transfor-
mations. In this paper, we focus on affine transformations and
sulcuswise affine ones. The prior choice needs to fit the special
nature of these measures. As previously stated, such transfor-
mations are made up of an invertible matrix A and a translation
vector t. Difficulties are quite different for the two proposed
joint normalization techniques and will be detailed below.

First, about the global approach only one affine transforma-
tion controls the registration, so only few parameters are tun-
able. Let us begin by the rigid restricted case for a better under-
standing. The process starts from an initialization close to the
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Von Mises
(a) (b)

Bingham

Figure 6: Left: Von Mises distribution (Mardia and Jupp, 2000) where the vec-
tor is the mean angle and the blue curve its likelihood function up to a scaling
factor. Right: bi-modal Bingham (Bingham, 1974) distributions: the likelihood
is proportional to the radial distance between the displayed surface and an uni-
tary sphere. (a) is rather directional whereas (b) is uniform along a given plane.

solution, namely almost in adequation with the sulcal model
likelihoods, therefore huge displacements are alreaday penal-
ized, thus registration priors are not essential.

Now, the argument does not make sense anymore for affine
transformations since subject and model adequation is mea-
sured up to scaling factors. To avoid divergence phenomena
and numerical instabilities, these components are constrained
around the original scale of data (see appendix B for details and
formula) thanks to a gamma distribution.

From now on, we will focus on the proposed local registra-
tion scheme with one rigid transformation per sulcal label rather
than affine transformation for computing facilities. If the neces-
sity arises, additional scaling priors can be used as seen above.
Previously, we have presented the sulcal models as a way to
globally constrain the registrations. We study up to 60 labels,
so most of the smallest ones are rather similar in shape, since
they refer to elementary folds. Without any constraint, a fold
may be moved to and get mixed up with matching neighbours.
In this paper, our study will be limited to transformation pri-
ors satisfying the following independency assumption so as to
benefit from mathematical reductions: P(θ) =

∏
l∈L P(θl).

Registration priors appear during model estimation from a
training database and labeling of a test subject. For the first, the
priors must be set a priori since no more accurate information
is available, so priors have to be rather flat to prevent impossi-
ble registrations (local translation of 10 cm, rotation of π) but
tolerate a large range of transformations that may appear on the
training data.

For the second, registration priors can be either set a priori
or learned empirically. We chose the second since the sulcal
variability is not homogeneous and may depend on the con-
sidered dataset (if the considered subjects have specific com-
mon anatomical features), so a training database is used to es-
timate it, and model it. Next, their role will be to constrain
parameters inference on test data during labeling. Thus, in re-
ality, the learned priors depend on training data, so they write
P(θl|{θa,l}a∈A) with θa,l the transformation parameters of a given
subject a on the sulcus l, but now that this precision has been
done, this dependency is made implicit to simplify formula no-
tations. Lastly, during the modeling estimation step, each train-
ing subject has been registered to a common space. These trans-

formations are used to define the range of available transforma-
tions to further register test data.

To optimize model design of such priors, a suitable formula-
tion is needed. Indeed, the rigid transformation y of a point x
writes: y = R · (x − g) + (t + R · g − g) + g = R · xg + tg + g
where g denotes a referential point (the center of the rotation).
Thus, depending on this choice the variability of the translation
component tg may change hugely. To mimize such a criterion
the referential must be centered in the subject space (left of fig-
ure 5) or in the model space (right of figure 5). We derive in
appendix C a way to estimate the optimal g in order to reduce
translations variability.

Since suitable referentials gl have been chosen for each label
l, now prior choices will be discussed. From such referentials,
sulcuswise translations tl scatters spatially favouring some axes
(in both directions since each referential is centered around the
distribution of related translations). In this way, each translation
prior can be modeled by a full-covariance 3D Gaussian:

tl ∼ N(µl,Σl) (20)

with µl the Gaussian mean and Σl the Gaussian covariance ma-
trix. The Gaussian parameters are set a priori at the model es-
timation stage: µl = ~0 and Σl = (10 ∗ I)2, namely an isotropic
standard deviation of 1 cm. Then, during labeling the Gaussians
are learned from translations measured over the training data.

The 3D rotation matrices group constitutes a curve algebraic
subspace of the more general set of 3×3 matrices. Thus, a Gaus-
sian distribution can not be straightforwardly derived from the
matrix elements as can be done with translations data. The best
way to do so is to use Gaussians generalization dedicated to
Riemannian spaces (Boisvert et al., 2008; Pennec and Thirion,
1997) that straighten up locally curve spaces working in local
tangential planes through standard log and exponential maps
from differential geometry. To begin, an approximate formula-
tion has been chosen in order to give some visual insights and
computing facilities by simplifying rotations through a suitable
parametrization: the 3D vector-rotation w (see appendix D for
details) related to such Riemannian considerations. Lastly, the
set of 3D rotations is a 3 dimensional manifold in the 9 dimen-
sional space of 3 × 3 matrices. This parametrization is easy to
understand since w direction ( w

||w|| ) represents the rotation axis
and α = ||w|| the angle of rotation in radians. This represen-
tation is unique as long as α is different from π or −π (the cut
locus of the considered manifold). Therefore, for a given label
l, the rotation prior over Rl can be split into 2 parts:

P(Rl) = P(wl) ≈ P
(

wl

αl
, αl

)
≈ P

(
wl

αl

)
P(αl) (21)

where αl = ||wl|| and wl is the vector-rotation parametrization of
Rl.

Gaussian approximations dedicated to these particular data
are now studied. Since α equals a norm, all rotations are
counter-clockwise around their vector w which encodes the di-
rection of the rotation. For a given label, we expect the studied
set of rotations to be close from each other, so the same goes for
their rotation axes, but their directions are grouped only up to a
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MRI registration Global registration Local registration
 Baladin Talairach global basic global global affine local Talairach local

joint labeling and registration X X X X X
joint model estimation and registration X X X X

transformations type affine affine affine rigid rigid affine sulcuswise rigid sulcuswise rigid

initialization Talairach Talairach Talairach Talairach global

Table 1: Description of the main differences of all -based models presented in this paper. The 3 main models are enlighten by a light gray backround. The
initialization stage (last row) describes the relations between the models: the output of some models becomes the input of others.

sign since opposite rotations have opposite rotation-vector rep-
resentation because α is always positive. Thus, only the axial
part of rotations are modeled, namely w and −w are considered
equally, and in the other hand, the rotation angle is modeled up
to a sign. Lastly, the axes are modeled by a Bingham distribu-
tion (Bingham, 1974) and the angle by a Von Mises distribution
(Mardia and Jupp, 2000) (see appendix E for details, and figure
6 to see what the distributions look like).

4.5. SPAM and Registration
A  model is non-parametric since it is currently rep-

resented as a 3D-volume of probabilities. Thus, energy
derivatives-based optimization schemes could be limited by dis-
crete gradient approximations. Therefore, a model-blind but
efficient method has been preferred, which needs only a way
to assess the optimized function at each tested value. To that
end, we chose to use the well-known Powell method (Powell,
1964) to cover the registration parameters space. Be it affine or
rigid, the rotations are represented through their vector-rotation
parametrizations. Thus, the Powell method suggests transfor-
mations covering the parameters space along a set of axes (lin-
ear combination of canonical axes) which are refined iteratively
during the optimization process according to the current value
improvements.

5. Results

In the following, 8 models divided in 3 categories will be
discussed, the following names are used throughout this paper.
For each considered model, Left and Right hemispheres have
been processed independently in hopes of better normalization
adjustments.

The first category groups MRI-based normalization tech-
niques (section 3.1) followed by sulcal model estimation (
models in this study, see section 3.2) from this common space.
The following names will be used to represent these models ac-
cording to the applied normalization: -, Baladin-
and Talairach-. In the second category named global reg-
istration, labeling is done jointly with global registration (see
equation 11): global basic- is based on  models built
from the Talairach space (the same used by the Talairach-
model), global- and global affine- are based on 
models refined by global registration (using the method defined
in equation 18). global basic- and global- models op-
timized one global rigid transformation (1 rotation and 1 trans-
lation) whereas global affine- optimizes an affine one (2

rotations, 1 diagonal scaling matrix and 1 translation). These 3
studied global approaches are based on the Talairach- one
as an initialization since it is the default approach in the Brain-
VISA anatomical pipeline, which gives a good starting point for
further rigid refinements. The last category deals with local reg-
istration: local Talairach- uses the Talairach- model
as an initialization whereas local- is based on the global-
model. Both models are built with local registration refine-
ments (sulcuswise rigid transformations: see equation 18) and
labeling inference is coupled with local registration optimiza-
tion (see equation 13) with sulcuswise registration referential
points (defining center of rotations and how to apply translation
a priori, see section A) determined from subject space. The
features of these models are summarized in the table 4.4.

5.1. Error Measures

Since many different error measures are used in other stud-
ies, several measures are suggested here to make comparisons
easier with these works.

The more reliable the models are, the harder their compara-
ison is since they do much less errors, so some local improve-
ments become exceptional. Then it could be hard to determine
if the result reaches the significance level. That is the reason
why we have looked for more sensitive measures to assess more
and more accurately the quality of our models.

The following measures rate a single subject and assess the
quality of its labeling (automatic labels) inferred from a sulcal
model, comparing it to the known ground truth (manual labels).
First of all, let us introduce some notations: FP(l), FN(l), T P(l)
stands respectively for false postive (sulcal pieces automatically
labeled with l whereas their true labels are different), false neg-
ative (sulcal pieces manually labeled with l whereas their auto-
matic labels are different) and true positive (sulcal pieces where
both manual and automatic labels are l) measures of label l. For
each of these measures, the retained value is the cumulative size
(number of voxels in the subject space) of sulcal pieces verify-
ing the specified conditions.

Historically (used in our previous works (Rivière et al.,
2002)), Emass measured only the proportion of false positive (or
false negative) errors:

Emass =

∑
l∈L

FP(l)∑
l∈L

FP(l) + T P(l)
=

∑
l∈L

FN(l)∑
l∈L

FP(l) + T P(l)
(22)

Next, we derive sulcuswise local measures which take into
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Figure 7: Local improvements of global and local approaches and their significance. Top: sulcuswise leave-one-out mean error rates (see equation 23). Bottom:
sulcuswise leave-one-out mean complementary of posterior probabilities (see equation 25). All results are mapped on manual labels of only 2 subjects (one for left
hemispheres and another one for the right ones) chosen because they present most of the studied sulci. 3 columns: left: error measures from the Talairach-
model. Middle: local improvements (error measure differences) of global- versus Talairach- (left) and local- versus global-. Right: logarithmic
mapping of two tailed corrected p-values (using the Bonferroni correction, dividing uncorrected p-values by the number of considered sulci) computed thanks
to a Wilcoxon test on the respective compared models. It measures the statistical significance of both increase or decrease of error rates. Besides, in the above
figures, most decreases are not significant. See the begining of section 5 for details on compared models. The posterior-based measure (bottom) gives rather similar
improvements in mean than the label-based one (top) for the global- model, and slightly better improvements for the local- model. In the other hand,
results are much more significant in the case of posterior-based measure (see p-values: light green color already means significant results with p-values inferior than
5.10e−2, whereas most are green or dark green). Thus, this measure is more sensitive to slight improvements.
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Figure 8: Effects of joint labeling and registration (global and local) on 2 primary sulci: the posterior cingulate fissure (F.C.M.post.) and the calcarine fissure
(F.Cal.ant.-Sc.Cal.). The illustrated phenomena have been established on all 62 subjects but we focused here on those which give the best improvement for the
concerned sulci. Top: local posterior probabilities of F.C.M.post. (Left) and F.Cal.ant.-Sc.Cal. (Right), mapped on each sulcal piece of the respective subjects.
Bottom: zoomed and cropped details of studied sulci and their neighbourhoods, sulcal pieces are colored according to labels inferred from several SPAM models
(left to right: Talairach-, global- and local-), and mixed with visual representation of the sulcal distribution of interest. Both illustrations emphasize the
interest of the joint approach for labeling (for global- approach only since local- one gives rather similar labels) and in term of local posterior probabilities
(for global- and local- approaches, since subjects sulcal data and sulcal models are better and better superimposed). Details of considered models are given
at the begining of section 5.
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Testing results:
MRI registration Global registration local registration

 Baladin Talairach global basic global global affine local Talairach local

ES I
Left 18.06 (5.31) 17.52 (4.59) 17.55 (5.93) 15.27 (2.74) 14.59 (2.88) 14.31 (2.87) 16.79 (4.35) 14.22 (2.96)

Right 16.65 (4.61) 15.82 (3.79) 16.83 (3.77) 14.70 (3.09) 13.97 (2.91) 13.80 (2.62) 15.61 (3.72) 13.48 (3.13)

Emass
Left 17.24 (4.95) 16.84 (4.21) 16.64 (3.69) 14.56 (2.54) 14.01 (2.62) 13.75 (2.57) 16.61 (4.17) 14.11 (2.79)

Right 15.87 (4.37) 15.17 (3.63) 15.96 (3.66) 13.95 (2.98) 13.37 (2.82) 13.17 (2.52) 15.29 (3.51) 13.30 (2.99)

Previous

Brainvisa model

21.37 (5.34)

20.12 (5.05)

23.63 (5.42)

22.12 (5.05)

Training results:
MRI registration Global registration local registration

 Baladin Talairach global basic global global affine local Talairach local

ES I
Left 15.09 (5.30) 14.78 (4.34) 14.34 (3.51) 13.11 (2.78) 11.61 (2.38) 11.64 (2.49) 14.71 (4.23) 11.97 (2.30)

Right 14.29 (4.58) 13.43 (3.55) 13.64 (3.13) 12.66 (2.68) 11.22 (2.39) 11.66 (2.26) 13.93 (3.66) 11.96 (2.77)

Emass
Left 14.44 (4.95) 14.19 (4.10) 13.65 (3.26) 12.55 (2.46) 11.23 (2.27) 11.26 (2.32) 14.63 (4.16) 11.89 (2.05)

Right 13.66 (4.34) 12.88 (3.20) 12.87 (2.87) 12.08 (2.57) 10.80 (2.27) 11.19 (2.15) 13.72 (3.46) 11.81 (2.62)

︸                                                                                                                                              ︷︷                                                                                                                                              ︸
-based models from this paper

Previous

Brainvisa model

17.11 (4.32)

16.86 (4.78)

19.26 (4.54)

19.03 (4.89)

︸                ︷︷                ︸
Markovian, SVM-based
model from Rivière et al.

(2002)

Table 2: Top: Leave-one-out mean (over 62 subjects) labeling error measures (in %):  and mass error rates and their standard deviations between parenthesis
for all studied models (see main text, section 5 for detailed descriptions). Bottom: same measures but only one model has been learned from the whole database
and all the subjects have been labeled from it. Left: results related to all the -based models used and described in this paper (new methods proposed by the
Brainvisa software). The results of the 3 main models are enlightened by a light gray backround. Right: best results obtained previously by the standard model
of the Brainvisa software (Markovian, Support Vector Machine-based model as described in Perrot et al. (2008); Rivière et al. (2002)) in the same experimental
conditions (see section 6 for details and comments). The differences between training and testing results are in the order of 3% which proves that the localization
models are rather reliable and generalize well to unknown data. Notice that training results between both hemispheres are more balanced than testing ones which
suggest that left models are slightly less robust since left hemispheres are more variable.

account all errors involving a given label l (missing and over-
much sulcal pieces):

Elocal(l) =
FP(l) + FN(l)

FP(l) + FN(l) + T P(l)
(23)

This measure allows to see local improvements which could be
drown into noise at the whole brain scale.

The last labeling error proposed here synthetizes above lo-
cal errors to a single measure which refines the historical global
error Emass. It draws inspiration from the measure called simi-
larity index: SI (Yang and Kruggel, 2007):

ESI =
∑
l∈L

wl
FP(l) + FN(l)

FP(l) + FN(l) + 2 ∗ T P(l) (24)

where wl =
sl∑

l∈L sl
with sl = FN(l) + T P(l) is the true size of

the sulcus l.
Each component of the sum over labels differs on two points

compared to the local measure. First, true positive measures
T P(l) count twice as false positive FP(l) and negative ones
FN(l), in order to remove errors shared by several labels, since
each extra sulcal piece for a given label is a missing part for an-
other label. Second, each component (ranging between 0 and 1)
is weighted according to the sulcus true size so that each local
component count as much as its size. In a practical way, this
measure seems more draconian than the historical one since the
first is always higher than the second on our results.

All these measures depend strongly on the choice of auto-
matic labels. Sometimes, several labels are closely in competi-
tion with their label posteriors P(Li|Di) almost equal on a given
sulcal piece i. In this case, the infered label is rather arbitrary.
Besides, two models can provide labeling very alike from each
other, whereas their posteriors are quite different which means
that both models agree but one may be more confident than the
other since its posteriors are more uneven. Thus, we propose a
new local measure based on local posteriors of labeling, namely
we measure the mean posterior of a studied label l over sulcal
pieces which are really labeled with this same label:

Epost(l) =

∑
i∈El

siP(Li = l|Di)∑
i∈El

si
(25)

where El is the set of sulcal pieces labeled manually with label
l and si the number of voxels of the sulcal piece i.

5.2. Study 1: on 62 subjects
5.2.1. Assessment Strategy

Previously, in past works (Rivière et al., 2002), we split our
former database (26 subjects) in a training (21 subjects) and a
testing one (5 subjects). This scheme was not satisfactory since
not enough data were used to assess the model quality or to
build the model. Moreover, in this context, the results were
quite sensitive to the choice of subjects for the split.

To answer to this issue, we used a leave-one-out valida-
tion scheme. Namely, for each subject we derive a training
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database including all subject except the studied one, and a
testing database composed of the subject laid aside. Thus, for
each hemisphere, 62 models (as many as subjects) are estimated
(computing of localization models: , of registration param-
eters prior models, label priors) from each training database.
Then 62 leave-one-out testing subjects are labeled each from
its respective model. Thereby, all these results are much more
reliable than our previous ones.

The estimation of all parameters of the most advanced pro-
posed models last about 3 hours, so the full computation for
both hemispheres and for all 8 studied models reaches more
than 125 days cumulating. Therefore, we developped grid com-
puting strategies to make this study possible and reduce com-
putation time by a factor of about 50.

5.2.2. Labeling and Registration
For all the following results, the reader is referred to table 2

for global error measures, figure 2 for visual details on central
sulcus and parieto occipital fissure alignments, figure 7 for local
improvements.

The first comparison refers to affine registration and label-
ing. Using first an affine registration set a priori and then deal-
ing with sulcal labels gives rather similar results for the 3 tested
approaches (Talairach,  and Baladin) with a certain prefer-
ence for Baladin which gives even better results than the man-
ual registration to Talairach. With these 3 techniques, common
and severe errors are observed even for the largest sulci like
misplaced chunks of sulci or double delineations. Besides, the
quality of sulcal pieces segmentation may considerably affect
the emergence of such errors.

Previously, we have tested Markov-based approaches (Per-
rot et al., 2008; Rivière et al., 2002) that prevent such errors
to some extent, but their study is beyond the scope of the cur-
rent paper. We noticed that many of these issues are induced by
erroneous normalizations resulting in a bad adequacy between
subjects compared to a sulcal model. Thus, compared to sulci
labeling from an a priori defined common space (Talairach-
), our joint global approaches (rigid or affine) (global-
or global affine-) bring significant improvements in sulcal
alignments and so sulcal labeling. The significance has been as-
sessed by the study of signed differences (decrease of errors) of
subjectwise global mean errors through a Wilcoxon test. Left
hemisphere-based models (Talairach- versus global-
for instance) give a p-value of 6.5e−8 and right ones 6.2e−9.
In table 2, the columns titled Global registration show the in-
terest of using global normalization refinement during label-
ing (global basic-) and model estimation (global- and
global affine-), each step reduces uncertainties and im-
proves labeling. The global affine version is slightly better than
the rigid one but is harder and longer to optimize. Besides,
we need constraints on the rotation defining the axes along
which affine scaling factors are applied to add robustness and
efficiency to the process. We also measured thanks to an en-
tropy differences criterion (see figure 4) that each -based
sulcal model is sharper with global refinement (global-)
than without (Talairach-) so the sulcal variability has been
reduced in this optimized common space.

Whereas most sulci are rather-well aligned onto this prob-
abilistic template, others may be shifted locally. The use of
local registration from a well-chosen common space allows to
enhance or even fix local fits. The Talairach space is not good
enough to define suitable priors (section 4.4 for details on pri-
ors) as hard constraints. Their labeling results (local Talairach-
) improve SI error according to those from Talairach-
model, but worsen them compared to global- one. Lastly,
first starting from the global optimized space (global-) and
then locally optimizing the matching gives some improvements
(local-). In fact, the labeling results are rather close and
the mean error rates improvements (see table 2) reach the sig-
nificance limits (p-values of 3.7e−2 for the left hemispheres and
4.1e−2 for the right ones with a one sided Wilcoxon test). Only
a few sulci present quite significant improvements (see Bon-
ferroni corrected p-values on top-rows of figure 7). Neverthe-
less, during the same time, local posterior probabilities signifi-
cantly increase (bottom-rows of figure 7) which means a better
adequacy between each labeled subject and this model. How-
ever, these results are partly explained by sharper  models
which give higher posterior probabilities, but on condition that
the alignment is correct which is performed by the local regis-
tration. To realize concretely these effects, the reader is referred
to the figure 8 where the enhancements are detailed on two sulci
of two specific subjects.

Lastly the best labeling results are obtained with local-
with a leave-one-out global mean error rate (ESI) of 14.22%
for the left hemispheres and 13.48% for the right ones, that is,
respectively, a recognition rates of 85.78% and 86.52%.

Some training results are presented in table 2 to highlight
possible robustness issues. Basically, the differences of error
rates between testing and training results are comparable from
one model to another or even decrease for local registration on
right hemispheres, which states that models complexity does
not seem to harm the robustness. On the other hand, training
results are more balanced between both hemispheres than test-
ing ones, which reveals a lack of robustness in the face of the
higher variability of left hemispheres.

5.3. Study 2: varying database size

The previous study gives good insights on the quality of the
proposed sulci identification models in regard to a database
of 62 manually labeled subjects. Most certainly, this amount
of data should be quite representative of the true anatomical
variability of most well-understood and less-variable folds, but
more subjects may be needed for secondary ones. Lastly, these
observations only reflect a statistical estimation issue. In the
following, we suggest a way to point out which parts of our
models lack information and limit their current performances.

5.3.1. Description
The main idea of this study is to assess the variation of la-

beling error rates (global and sulcuswise results) in regard to
the number of subjects used to estimate the proposed mod-
els in order to extrapolate results behaviour beyond the current
database.
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left hemisphere right hemisphere

left central sulcus left transverse parietal sulcus diagonal branch of left Sylvian fissure

Figure 9: Error rates changes while database size is increased on the following models: Talairach- (red), global- (green), local- (blue). Top: global
results. Bottom: typical local results: all with decreasing exponential shape, but varying convergence rates.

The followed strategy consists in selecting randomly n sub-
jects from a full database of 62 subjects to make up a train-
ing database used to estimate each studied model (Talairach-
, global- and local-) and the (n − 62) remaining
subjects are used to test these models through labeling error
rate assessments. For each studied database size, this operation
is repeated 100 times to sample the possible combinations of
drawing n subjects among the full database. In a practical way,
the sampling may artificially favour the drawing of some sub-
jects. This biases averaged measures without any caution. A
standard solution is to first compute one sampling mean over
all trials per subject and then compute the mean of these sub-
jectwise measures, which is unbiased since each subject has the
same weight. Special cases are followed when n equals 1 or
62 since the sampling step is not needed anymore. Actually, a
standard leave-one-out scheme is used instead, over training or
testing data depending on the matter.

5.3.2. Comments
The estimation of -based models relies on a convolution

kernel. In this study its width has been specified empirically for
the whole database to 2 mm and remains fixed while the number
of subjects varies. Actually, its optimal value strongly depends
on the number of subjects: the less subjects are considered, the
larger the kernel width becomes and conversely. This aspect
goes beyond the bounds of this paper and will not be explored
further since it should only affect the details of the presented
results but not the main message.

5.3.3. Results
The results of the current study are depicted in figure 9. Top

and bottom rows show respectively global and local sulcuswise

error rates changes in regards to the number of subjects of the
training database. At first glance, for all models, performances
order is overally preserved. In greater details, error rates follow
a natural decreasing exponential curve since each new subject
or manually labeled sulcus yield all the less additional infor-
mation as the database size gets larger. The actual statistical
analysis of our results is rather difficult to cope with because
of considerable dependencies between boostraped training and
testing sets whose degree of freedoms is affected in an unknown
measure. Besides, this influence most probably varies with the
database size. So, the following results must be seen as ten-
dencies whose statistical interpretation is limited for the time
being.

Global results seem to reveal that the current number of sub-
jects is almost sufficient to reach the limit of the proposed mod-
els since asymptotes of these curves are almost reached. On the
other hand, local results reveal a range of specific behaviours
which leaves room for improvement. Indeed, whereas some lo-
cal models are quite well estimated with only few subjects (for
instance, for central sulcus, 10 subjects seem to be enough, see
figure 9 bottom left), other models still benefit from additional
information with the full database (for instance, the curve of the
diagonal branch of the left Sylvian fissure has not even reached
its asymptote with 62 subjects, see figure 9 bottom right). The
behaviour related to a given cortical fold depends on its inter-
subjects variability and the complexity (degree of freedom) of
the considered model. Indeed, if we consider, for instance,
the case of the left transverse parietal sulcus, about 20 subjects
seem enough to reach the rather limited maximum capacity (er-
ror rate of 90%) of the Talairach- model, whereas about 60
subjects are needed by the global- approach to converge to

17



an error rate of 70%. Lastly, the full database seems not even
sufficient to estimate the best possible model based on the local-
 technique.

Rather than blindly increasing the number of manually la-
beled database, this study yields a way to limit the tedious man-
ual labeling only to the few sulci models which may benefit
from a better estimation. Lastly, current results could be effi-
ciently improved with such targeted additions.

6. Discussion

6.1. Labeling Independence Assumptions: Known Limitations
A sulcus is generally made of several sulcal pieces, layed

close to each other. During the brain development and after-
wards even in the adulthood these structures can touch, push or
shift their neighbourhood. This implies strong dependence be-
tween distinct neighbouring sulcal pieces. Thus, the indepen-
dance assumption in the proposed models is somewhat trans-
gressed. Actually, the approximation remains fully valid only
for the main parts of the primary sulci (exceptions exist even on
healthy subjects: see figure 11), but less valid for quite variable
secondary folds like branches. It is clear that this approach does
not give definitive answers to sulci labeling. Nonetheless, start-
ing from an extremely simplified initial model (section 3.3), we
have developped in this paper new and refined models (section
4.2 and 4.3) that overcome the limitations of the latter.

In fact, human experts identified sulcal branches step by step
thanks to their neighbouring folds from the most reliable to the
least reliable. This suggests the use of a graphical model such as
a Markov field, as proposed in our previous works (Perrot et al.,
2008; Rivière et al., 2002). Loopy Belief Propagation algorithm
could mimic the knowledge diffusion process (as showed by Shi
et al. (2009) in the context of sulci labeling) and efficiently re-
place a standard optimization strategy scheme. Indeed, to cou-
ple such models with our joint labeling and registration frame-
work, new approximations still have to be defined to keep mod-
erate computing times.

6.2. Comparison with Previous BrainVISA Models
The interest of neighbouring information to sulcal labeling

needs no further proof, that is why we paid attention to it in
previous works (Rivière et al., 2002) and tried to make use of
it in the context of  models (Perrot et al., 2008) but with
moderate success (it is without doubt owing to difficulties we
encounter when mixing descriptive and discriminative model-
ing aspects). These previous approaches are valuable but they
do not take into account local information. The difference be-
tween the two methods turns to be large and statistically signif-
icant.

Let us consider the Markovian and 1 (Support Vector

1-based models from Perrot et al. (2008) are, from a software point of
view, technically easier to handle than  (Multi-Layer Perceptron)-based ones
from Rivière et al. (2002), particularly in order to extend it for cross-validation
purpose. Besides, they reach the same performances under various conditions
which allow the comparison with both models. The computation of all models
estimation and labelings required more than 5500 CPU hours and the use of
cluster computing.
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Figure 10: Sulcuswise leave-one-out mean error rates differences highlight-
ing local improvements of Talairach- model against the previous Brainvisa
model (based on a Markov field of sulcuswise  experts). Most of the im-
provements are even visible in the comparison with the Talairach- model.
Results from global- and local- models give similar tendencies. Lo-
cally, only a few sulci errors increases with the use of  models. In these
areas the neighbourhood modeling seems to surpass location informations.

Machine)-based model from Perrot et al. (2008). The last col-
umn of table 2 shows global errors (ES I and Emass, section 5.1)
under the same experimental conditions as -based mod-
els using a leave-one-out evaluation scheme. Compared to the
previous model proposed in BrainVISA, even the basic 
models that learned from the Talairach space ( registra-
tion/Talairach column) performed significantly better (see fig-
ure 10 for details). Even with this simplest spam model that
used basic shape matching and location information, the error
decreased by 3% (with a one-sided Wilcoxon-based p-value of
1.6e−7 for the left hemisphere and 2.3e−6 for the right one) com-
pared to the previously published model (Rivière et al., 2002),
even though the latter made use of much richer information
(various location, high level shapes and topological neighbour-
hood descriptions). In fact, the main flaw of the previous model
lies in its complexity and the difficulties to interpret model pa-
rameters. That is why we have explored new perspectives in
this paper with the intention of reintroducing the complex high
level features but in an improved basis.

6.3. Comparison with Other Models
The comparison with other labeling strategies from the lit-

erature should provide valuable insights to the brain mapping
community. There are several issues to deal with in order to
reach this aim. A combined effort from the community should
be required to standardize the anatomical definition of sulci and
build bridges across the various mathematical representations
: sulcal lines (Hurdal et al., 2008; Lohmann, 1998; Kao et al.,
2007; Seong et al., 2010; Shattuck et al., 2009; Shi et al., 2008;
Tao et al., 2002; Thompson and Toga, 1997; Tosun and Prince,
2008; Tu et al., 2007), surfaces (Goualher et al., 1997; Vaillant
and Davatzikos, 1997; Zhou et al., 1999), voxels (Klein and
Hirsch, 2005; Le Goualher et al., 1998; Perrot et al., 2008; Riv-
ière et al., 2002), with or without branches or breaks. This im-
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plies various kind of error measures. It mainly concerns metric-
based approaches in the case of shape inference and classifica-
tion error rates in the case of labeling.

6.4. Registration: Known Limitations
Even in the case of the non-linear extension we proposed in

this article, there is another well-known situation where the in-
dependence assumptions we have made upon the labeling or
between local transformations are no longer confirmed. It con-
cerns outlier subjects with huge consistent shifts. Such shifts up
to 2 cm exist on healthy subjects (for instance, see the central
sulci of the subject in figure 11), but they happen too rarely to be
estimated accurately from one hundred subjects. Further prior
modeling would be needed to allow this kind of transformation.

The proposed piecewise rigid transformations model would
benefit from coupling all the local estimations into a global de-
formation field. In this respect, polyaffine diffeomorphic trans-
formations (Arsigny et al., 2005) accounts for a good candidate
to yield a continuous and smooth normalization from a set of
local landmarks with locally affine moves. The current known
variability of the largest sulci suggests to use more than one
control point on some of them, which should be defined from
reliable structures like sulcal roots or sulcal basins. Further
non-linear extensions which have already been used with the
proposed labeling framework (Auzias et al., 2009) are also en-
visaged like discrete measures or currents (Glaunès et al., 2004;
Glaunès and Joshi, 2006).

More generally, any state of the art diffeomorphic registra-
tion techniques (Ashburner, 2007; Avants and Gee, 2004; Joshi
et al., 2004; Yeo et al., 2010), which provides smooth, invertible
and non-linear transformations, should give better normaliza-
tion results than those obtained here in cases where neighbour-
ing folds ambiguity is limited. But even better results could
be expected using the proposed general framework with the in-
tegration of anatomical knowledge through joint labeling esti-
mation. However, a balance needs to be respected between the
computing overhead of such advanced transformations and the
actual needs of such precision, which may be excessive, in the
context of sulci labeling. Finally, such integration should be
carried out with caution, with the introduction of suitable priors
over transformation parameters.

To conclude, the proposed non-linear registration remains
basic but rather reliable since it is based on implicit sulcal con-
straints, without requiring any manual delineation which are
quite difficult to define. It would be interesting to assess the
impact of the suggested normalization techniques on functional
activation detection or white fiber bundles clustering.

7. Conclusion and Perspectives

A very important advantage of the models proposed in this
paper is that they use only few assumptions to characterize sul-
cal data, especially the fact that they can be well localized up
to an unknown normalization. Indeed, even priors used for the
labeling step are learned empirically from a database. No spe-
cific case has been assumed for any sulcus. Thus, these mod-
els are generic and can adapt easily to other sulci definitions

or even to other anatomical structures (e.g., internal structures
like deep gray matter nuclei or largest well-known white matter
fiber bundles).

We have explored several original methods to label sulcal
pieces from localization information. Sulci variability has been
modeled through a mixture of  models, inspired by the
work of Le Goualher et al. (1998), that offer visual information
on the mean position and shape of cortical folds. First, we have
proposed a method based on a normalization technique working
either on labeled or unlabeled subjects. To provide straightfor-
ward comparisons with the proposed models, we have focused
only on standard affine normalization techniques: Talairach,
 and Baladin. In future work, we will compare the suggested
sulcuswise registration and labeling approach to standard non-
linear registration techniques.

Secondly, we have proposed a refinement of this approach
by reducing the uncertainty of affine normalization with either
model estimation or labeling of new subjects. This method
gives significant improvements compared to those of the first
category, both regarding sulcal labeling and the quality of affine
normalization. Indeed, sulci alignment is considered to be
a good criterion to validate normalization techniques (Fischl
et al., 1999; Hellier et al., 2003; Van Essen, 2005; Eckstein
et al., 2007; Tosun and Prince, 2008). The proposed global ap-
proach maximizes these alignments even if labels are unknown,
and outperforms all other tested affine registration methods.
Thus, the generalization capacities of  models behave like
an indicator of the quality of the common space upon which the
model has been estimated.

Lastly, we have suggested a non-linear extension based on
sulcuswise locally rigid transformations. They proved fast and
efficient thanks to sensible model approximations and suitable
priors. In most cases, this approach results in labelings very
similar to the results of global approach, but their posterior
probabilities (how much the model is confident in the proposed
labeling) of real labels are significantly improved. This indi-
cates that uncertainties have been reduced. This could be useful
to detect abnormal folding. Nevertheless, significant improve-
ments have been assessed in frontal medial areas.

From now on, as stated before, we we have practically
reached the limit of current experts knowledge. For this pur-
pose, first, we will continue our efforts to ensure better nor-
malization of sulcal data and enhance the adequation between
tested subjects and models through the integration of smooth
and continuous transformations. Second, we will extend these
models with the key features used by the previous BrainVISA’s
sulcal labeling model (Rivière et al., 2002), namely, high level
sulcal shape and neighbourhood features.
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Figure 11: This subject, represented with its true manual labels on the left and
with labels infered from local- method on the right, is the best illustration
of the limitations of the presented joint labeling and normalization techniques,
induced by local transformations independency. In fact, the central sulci (red
color at the middle of the image) and therefore their neighborhood (pre-central
and post-central sulci, posterior parts of medial frontal sulci and anterior part
of parietal sulci) are shifted posteriorward up to 2 cm, compared to standard
locations represented here by dashed lines. These huge displacements need
coherent translation moves along the brain and maybe with constraints linking
both hemispheres as suggested by this subject.

A. Labeling Prior Optimization

Let us consider the optimization of labels priors from the
training database. We have, for each subject: P(La|Θa;Mp) =∏

i∈Ea
P(La,i|Θa;Mp) with Ea the set of sulcal pieces of the sub-

ject a and La,i the label given to the sulcal piece i of the subject
a. Since labels prior modeled the chance to have one label-
ing rather than another without any consideration from subject
data (be it structural, size, shape, or position), the prior values
are limited by the range of possible combination of labels. The
labels are considered independent and the number of labels is
limited, so are the possible values taken by label priors. So,
we rewrite P(La,i=l|Θa;Mp) = πl for whatever a and i, with∑

l∈L πl = 1, where L is the set of all considered sulcal labels.
Lastly, the optimization of labels priors writes:

π∗ = argmax
π

∏
a∈A

∏
i∈Ea

P(La,i|Θa;Mp)

= argmax
π

∏
l∈L

πl
|l| with |l| the number of sulcal

pieces with the label l

(26)

Using the logarithm of the previous equation, the optimization
problem is: 

π∗ = argmax
π

∑
l∈L
|l| log(πl)

s.t
∑
l∈L

πl = 1
(27)

where π = {πl}l∈L.
We now introduce the lagrangian parameter λ to incorporate

the constraint into the maximization problem:

E =
∑
l∈L

|l| log(πl) + λ

1 −∑
l∈L

πl

 (28)

The optimal parameter values cancel partial derivatives:

∂E
∂πl

=
|l|
πl
− λ = 0

then, πl =
|l|
λ

=
|l|∑

l∈L |l|

(29)

since πl is normalized.
Thus, according to the independence assumption made over

the labeling prior, the optimal prior of having the label l on a
given sulcal piece is the frequency of finding this label on sulcal
pieces over the training database.

B. Affine Registration: Scaling constraints

The linear part of an affine transformation writes: Ag =

UgDgV t
g with Ug and Vg two rotation matrices and Dg a diago-

nal matrix of scaling components. We do not have any a priori
on the directions (defined by the rotation V t

g) on which scaling
factors are applied. So as to satisfy the constraints of positivity
of the scaling factors and keep the prior as simple as possible, a
standard gamma Γ(·, ·) distribution defined by its shape param-
eter k and its scaling parameter s has been choosen. Its mean
complies with the constraint ks = 1, namely the chosen arbi-
trary but natural scale is the original scale of the data.

P(θg) = P(Dg) =
∏

i∈{1,2,3}

P(Dg,i) where each Dg,i ∼ Γ

(
k,

1
k

)

so, log
[
P(θg)

]
= (k − 1)

∑
i∈{1,2,3}

log
[
Dg,i

]
− kDg,i + C(k)

(30)
where Dg,i is the scaling parameter of the ith direction and C(k)
a constant depending only on the fixed parameter k (so it may
be ignored during optimization). In our test, we used k = 1600
which gives a distribution close to a Gaussian centered around
1 with its standard deviation equal to 1

√
k
, here 0.025.

C. Local Registration Referential Optimization

For a given subject a and a given label l, the local rigid trans-
formation of a point x to the point y, expressed in the referential
g is y = Ra · (x − g) + (Ra · g + ta − g) + g. So the inverse trans-
formation is x = Rt

a · (y − g) + (Rt
a · (g − ta) − g) + g with

(Rt
a · (g− ta)− g) corresponding to the local translation from the

referential g. The ideal g is the one which reduces the variabil-
ity of these translations so we suggest to minimize the following
energy:

E =
∑
a∈A

||Rt
a · (g − ta) − g||2 (31)

First, if all Ra = Id, E does not depend on g anymore, so all
referentials are equivalent. For other cases, we have to study
the derivatives of the energy:

∂E
∂g = 4|A|g − 2

∑
a∈A

[
(Ra + Rt

a) · g + (Ra − Id)t · ta
]

= ~0

Thus, g =

[ ∑
a∈A

(S a + S t
a)
]−1 [ ∑

a∈A
S t

a · ta

] (32)
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where S a = Id − Ra, and |A| is the number of subjects.
In fact g is also the solution of minimizing the following en-

ergy:
E =

∑
a∈A

||Ra · g + ta − g||2 (33)

where each component of the sum is the square norm of a lo-
cal translation from the referential space to the common space
(the opposite direction of the previous energy 31). Thus, both
directions give the same optimal point of reference g. But at the
optimum, the first proposed energy is lower than the second and
so the variations are more constrained and should give sharper
priors.

D. Vector-Rotation Parametrization

A rotation can be described as follows:

R = exp (U)
where

{
s = sin(α)
c = cos(α)= I + s

α
U +

(1−c)
α2 U2 (34)

where α = ||w||, exp(·) stands for standard matrix exponential
(or expI : the exponential map at point I, the 3 × 3 identity ma-
trix), U is a skew-symmetric (U t = −U) matrix:

U =

 0 −wz wy

wz 0 −wx

−wy wx 0

 with w = (wx,wy,wz) (35)

related to cross product since U · v = w × v.
The second line of equation 34 is known as the Rodrigues

formula and yields tractable ways to do conversion between
matrix representations and vector-rotation ones.

E. Circular and Directional Statistics

Circular and directional statistics cover a wide range of data
related to spherical data (data living in circles, spheres or
their p-dimensional generalizations). Various generalizations
and approximations of Gaussians have appeared to deal with
normed vectors, lines directed by those vectors, angles data or
orthogonal axial sets.

E.1. Distribution details

In our context, we have modeled each rotation by an axis w
and an angle α following the distribution below:{ wl

αl
∼ B(Al) a Bingham distribution

αl ∼ VM(νl, κl) a Von Mises distribution
(36)

with Al a 3 × 3 positive-definite symmetric matrix (the eigen
vector related to the largest eigen value is the mean axial di-
rection whereas the others are the scattering directions along
the orthogonal plane), νl the angle mean and κl controlling the
concentration. See figure 6 to see what the distributions look
like.

A Von Mises (Mardia and Jupp, 2000) (see left of figure 6)
distribution is used for angles data:

P(α|κ, ν) =
exp(κ cos(α − ν))

2πI0(κ)
(37)

where I0(κ) is the modified Bessel function of order 0. A max-
imum likelihood estimator () exists to compute κ and ν pa-
rameters from training data.

A Bingham distribution (Bingham, 1974) (see right of figure
6) is used for the axis part. This distribution is bimodal since
the axis direction does not matter:

P(w|A) = P(−w|A) =
exp(||w||2A)

1F1(0.5, 1.5,Z) (38)

where ||w||2A = wtAw is the canonical dot product defined by
A and A = MZMt (M orthogonal and Z diagonal) with 1F1 is
the confluent hypergeometric function of matrix argument Z.
The maximum likelihood estimator () of M is the matrix of
eigen vectors of the scattering matrix of training data. In the
other hand, Z is optimized numerically.

E.2. A priori values for model estimation

As previously, suitable parameter values are set a priori dur-
ing model estimation and estimated in regard to training data
variability for the labeling step. The angle mean νl is set to
zero and its concentration κl is set to approximate a standard
deviation of π

4 . About Al, the axis mean is set to be roughly or-
thogonal to a mean skull because local sulci distortions needed
to match the model are expected to move along the brain main
curves. Lastly, the dispersion directions are set to represent a
solid angle of 2

3 sr (steradians), namely an isotropic dispersion
of about π

4 radians from the axis.
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Figure 12: Lateral and medial view of the template optimized with local rigid registrations. Standard location of the sulcal labels (named according to their relative
acronym from Brainvisa software) are precised. See table 3 to get the definition of the acronyms.
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