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Abstract. Parallel computing resources are now available everywhere,
from a simple multiple core laptop to sophisticated clusters and grids.
Soma-workflow originated in the observation that many computational
processes in neuroimaging are highly parallel by nature and could take
advantage of the available resources with few adaptations. These pro-
cesses can be described by workflows which are sequences of parallel and
serial sub-tasks. Soma-workflow is a software which makes easier the ex-
ecution, control and monitoring of such workflow on various computing
resources. It provides the possibility to submit a whole workflow with-
out dealing with sub-task submission and dependencies. It also offers
a homogeneous interface to the different resources. Soma-workflow was
created for the purpose of being plugged to external software or being
used directly by non expert users.
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1 Introduction

Parallel computing resources are now highly available for researchers, from sim-
ple multiple core laptops, to sophisticated clusters and grids. Many steps in the
research process can benefit from these resources. Neuroimaging research is a
good example, it involves a lot of chained computational processes applied on
high dimensional data. In this research field, the use of parallel resources can
enable the validation of methods on larger datasets, the acceleration of some
algorithms or the use of non-regression tests. Coarse-grained parallelism is well
adapted in most cases: it involves many long processes (from a minute to sev-
eral days or weeks) which do not need to communicate together. Extensive work
to introduce fine grain parallelism in algorithms is indeed worthless when the
algorithm is intended to be applied on large sets of data. These coarse-grained
parallelized processes, also referred to as embarrassingly parallel, can be descri-
bed by workflows which are sequences of parallel and serial sub-tasks.



Setting up the execution of workflows on parallel computing resources can
be time consuming and strenuous for non-expert users. Furthermore, most of
the time this effort has to be done anew for each computing resource. Indeed,
resources can be of different kind (cluster vs multiple core machine for exam-
ple), or managed by different distributed resource management systems (DRMS)
which have various interfaces. Mutual research software such as BrainVISA [1]
also have to face the problem of multiple interfaces in order to make use of the
available parallel resources. The gap between researchers or mutual research soft-
ware, and the parallel computing resources can be efficiently bridged by software
with unified interface and practical features. The key features are the workflow
management system and the monitoring tool. The former provides the possi-
bility to submit a whole workflow without dealing with sub-task submission
while respecting their dependencies. The monitoring tool displays the state of
the workflow at any time during its execution.

Several levels of workflow description exist. We call ”pipeline” a high level
description: the sub-tasks are associated to functions which are possibly imple-
mented by a choice of methods, the inputs and outputs are typed and have
semantic descriptions. BrainVISA [1], Loni [2] or Nipype [3] are pipeline soft-
ware in neuroimaging, but many pipeline software exist in a broad range of
scientific domains [4–7]. Among other features, pipeline software provide solu-
tions for pipeline creation, sharing and perenniality. Opposed to pipelines, low
level workflows are ”executable” workflows: their sub-tasks are executable jobs
defined by program command lines.

A software dedicated to the execution of low level workflows on parallel re-
sources is of interest. It can be plugged to pipeline software or can be used di-
rectly by end users who work independently from pipeline software, even if they
already have settled their chain of computational processes. To our knowledge,
software offering the workflow execution feature on parallel resource are either
bound to a DRMS like DAGMan with Condor [8], or part of pipeline software
[2, 5, 4, 7]. In the latter case, the conversion from pipeline to low level workflow
is often done transparently for the user. The lack of an explicit or simple for-
mat for the executable workflow excludes the possibility to execute workflows
from either end user or other pipeline software. Moreover, many software are
dedicated to grids [6, 4, 7] and interface with grid middle-ware software such as
Globus [9] or gLite [10]. The possibility to use them on a simple multiple core
machine or on a cluster with common DRMS such as LSF, PBS, Condor and
Grid Engine, is often missing or incomplete.

Various choices in the workflow description are possible: direct acyclic graph
(DAG), Petri Net-based description [7] or specific iteration language [11] for
example. The description of workflows as direct acyclic graphs (DAG) has the
advantage of being simple and easily handled by users [8, 6, 2, 4]. The dynamic
feature is sometimes added to these simple workflow description using special
dynamic nodes [2].

A solution to address the aforementioned needs is presented in this paper:
Soma-workflow is a Python application dedicated to the execution of low level



workflows on a wide range of parallel computing resources. Soma-workflow was
created for the purpose of being plugged to external pipeline software or being
used directly by non expert users. Its application programming interface (API)
enables the users to create workflows described by simple DAG. The workflow
can be submitted, controlled and monitored using the same API or a graphical
user interface (GUI).

The rest of this paper is organized as follows. Section 2 is dedicated to the
presentation of soma-workflow. An overview of the software is provided with the
presentation of its main features. The core of the application is then addressed
in the description of workflows and their execution. Afterward, the light inter-
actions between soma-workflow and parallel resources is explained and justified.
Soma-workflow aims at being flexible: its different modes of utilization are then
presented, as well as tools which handle file transfer and file path matching
problems. The benefit of soma-workflow in concrete cases is demonstrated in the
section 3, with the presentation of three use cases in neuroimaging.

2 Soma-workflow

2.1 Main features

Soma-workflow provides a set of features in order to make the access to comput-
ing resources easier for non expert users:

– Unified interface to submit, control and monitor jobs and workflows on va-
rious computing resources. Soma-workflow was successfully used on multiple
core machines and clusters with the DRMS: Grid Engine, LSF, Torque and
Condor. Other systems can be plugged easily, in particular the systems which
implement DRMAA [12] (see section 2.3).

– Python API designed to be complete but simple and usable by non expert
users.

– A GUI to submit, control and especially monitor the workflow execution.
(Fig. 1)

– Several installation modes: single process or client-server mode.
– Transparent remote access to computing resources and disconnection at any

time with the client-server mode.
– Tools to handle file transfers and/or path name matchings in case the user

machine and the computing resource have separated file systems.
– Prevention of the saturation of the computing resource queues.

2.2 Workflow description and execution

The workflows are created using the Python API of soma-workflow. The work-
flows are described by direct acyclic graphs. The graph nodes correspond to the
sub-tasks of workflows and the arrows to the execution dependencies between
sub-tasks. Each sub-task, also called job, wraps a program command line call.



Fig. 1. Overview of Soma-workflow GUI. On the left: computing resource selection, list
of submitted workflows, current selection and workflow information. In the middle: a
view of the workflow in the form of a tree (green means ended jobs, blue means running
jobs). On the right: execution plots, here the jobs function of the time.

Optional file paths for job standard input, output and error, and job working
directory path can be specified.

Soma-workflow handles the execution of workflows on computing resources.
Each job starts as soon as possible, considering its dependencies with other jobs.
If a job fails the execution of the graph branch is stopped but independent
branches keep on running. The status of workflows and jobs as well as other in-
formation like job standard output/error or exit value are displayed continuously
in the GUI and can be recovered at any time using the API. The workflows can
be stopped at any time: jobs are killed if they are running and removed from the
computing resource queue if they are waiting. The workflows can be restarted:
the jobs which failed or were killed are submitted again.

The execution of the workflows can also be data driven. Each job can be
associated to file transfer objects which represent input and/or output files. The
execution is data driven in the sense that the jobs bound to input files will not
start before all their input files exist.

A workflow can be made of thousands of jobs, and hundreds of jobs can be
ready to execute at the same time. In the spirit of sharing a computing resource
among a group of users, one user might want to avoid saturating the waiting
queue with his jobs. Furthermore, a maximum limit of jobs per user in the
queue can be configured on some computing resource. For these two reasons, a
maximum number of jobs can be settled in soma-workflow. When the limit is
reached, the jobs which cannot be added to the computing resource queue, wait
in a second queue inside soma-workflow. As soon as a job leaves the resource
queue, soma-workflow submits the first job in its own queue.

2.3 Interaction with parallel resources

Soma-workflow uses only very basic parallel resource functionalities:



– Submission of a job with the option of specifying standard input, output and
error file paths, and working directory.

– Request of the status of jobs
– Request of the exit information of the jobs (exit value)
– Interruption and suppression of jobs

The restriction to these few essential functionalities makes it easier to use soma-
workflow on a wide range of parallel resources. Interaction with a parallel re-
source interface can be simply added by implementing four python functions
(kill job, job submission, get job status, get job exit info). Jobs are identified
with their own resource job identifiers.

If the resource is limited to one multiple core machine, soma-workflow offers a
straightforward solution. Indeed, Soma-workflow comes with a basic stand-alone
scheduler which has a waiting queue and runs jobs in parallel. The maximum
number of jobs which can run in parallel is adjusted by the user.

In the case of distributed computing resources, namely a set of computers
and users managed by a DRMS, a major objective for soma-workflow was to
interact successfully with the API called DRMAA (Distributed Resource Man-
agement Application API) [12]. The DRMAA specification is a software standard
developed in the Open Grid Forum for the submission and control of job to he-
terogeneous DRMS. The version 1 of DRMAA provides a unified interface for
DRMS which is however difficult to use by end users. It has another important
limitation: the job identifiers are not necessarily valid across the DRMAA ses-
sions, in consequence once the DRMAA session is closed it is not possible to
monitor or control the submitted jobs anymore through DRMAA. The architec-
ture of soma-workflow was designed to handle these limitations. Using various
implementations of the first version of DRMAA, soma-workflow was used with
success on clusters with the following DRMS: Torque, LSF, Oracle Grid Engine
and Condor. However, other implementations of DRMAA exist: the implemen-
tation of DRMAA for Grid Way could be used to extend soma-workflow to grid
computing for example. The DRMAA working group is working on the second
version of the specification. The improvements of this version suggest that it will
be easily plugged into soma-workflow.

2.4 Regular or client-server application

For the purpose of being flexible, soma-workflow can be used as a simple single
process application or as a client-server application. The simple single process
mode is well adapted to work on a single multiple core machine and can be a
good starting point to use soma-workflow. The client-server mode deserves more
explanations. Compared to the single process application it offers two interesting
additional features:

– Transparent access to remote computing resources. The communication with
the resource is done securely within a ssh tunnel.

– Disconnection at any time. The client part of the application runs on the user
machine and can be closed at anytime. A user can thus submit a workflow



to a remote resource from his laptop for example and then shut it down:
the workflow will keep on running on the resource. The user can open soma-
workflow at any time to monitor the progression of his workflow.

In the client-server mode, a server process has to run on the computing resource.
However, it is worth pointing out that none of soma-workflow processes need any
special rights to run. Indeed, soma-workflow respects the system of users and
permissions on the resource. The remote access to the resource is done using
the user own account on the resource. Therefore, all the actions done by a user
through soma-workflow are done with the user identity on the resource.

2.5 Problem of separated file systems

The previous paragraph states that soma-workflow can be used as a client-server
application to access remote clusters transparently. In this case, the user machine
and the computing resource do not necessarily have a shared file system. To han-
dle files and file paths in this case, soma-workflow provides two tools materialized
by two types of objects defined in the soma-workflow API: the file transfer ob-
jects and the shared resource path objects. These objects can be used instead of
any file path when creating workflows.

The file transfer objects enable the users to transfer files or directories to
and from the computing resource file system. A file transfer object is a mapping
between a file path which is valid on the user machine and a file path which is
valid on the computing resource. The location of the files or directories on the
computing resource as well as their life cycle are managed by soma-workflow. To
create a file transfer object, the user only needs to specify the path of the file or
directory on his machine. File transfer objects are thus nearly as simple to use
as local paths.

The second type of objects, the shared resource path objects, are of interest
when a copy of the user’s data already exists on each file system. Shared resource
path objects represent file paths which are valid on both file systems. An iden-
tifier is associated to the user’s data, and the computing resource path of the
data root directory is registered in soma-workflow. Soma-workflow ”translates”
the shared resource path object into a valid path when needed.

3 Three Neuroimaging use cases

The three neuroimaging research applications presented in this section show the
benefits of soma-workflow at three different steps in the research process. In the
first case the parallelism exists at the level of a single data treatment as the
algorithm splits the data into chunks, processes them and merges the results
afterward. In the second case soma-workflow is used for non-regression tests for
the purpose of reducing the sensitivity of an algorithm to variability. Finally,
an extensive cross-validation process of cortical sulci identification models is
performed.



3.1 Joint detection-estimation of within-subject fMRI data

At the subject level, this functional neuroimaging application aims at jointly de-
tecting which parts of the brain are involved in a given stimulus while also estima-
ting the underlying dynamics of activation by recovering the so-called Hemody-
namic Response Function (HRF). To address these two tasks, a Bayesian joint
detection-estimation (JDE) was developed in [13, 14] which takes into account
the spatio-temporal structure of the observed Blood Oxygen Level Dependent
(BOLD) signal. Indeed, adaptive spatial mixture models have been introduced
to model spatial correlation of fMRI data at the voxel level. The temporal aspect
mainly concerns the HRF modelling which is known to vary accross the whole
brain and thus cannot be considered constant. However, the HRF estimation
cannot be robustly performed at the voxel level due the low signal-to-noise ratio
of fMRI data. The JDE framework is then based on a parcel-based modelling of
the BOLD signal: the shape of the HRF is considered constant within the extent
of a small brain region, while its amplitude may vary accross voxels. In this set-
ting, the JDE approach relies on a prior functional parcellation which typically
divides the input fMRI data into several hundreds of parcels. Since there are as
many independent models as parcels, the analysis can be split up into parcel-
wise parallel analyses (activation contiguity across parcels is not guaranteed a
priori, but is observable in results). As the parcel size is not fixed, some big
parcels may arise from the parcellation process and may slow down the overall
parallel processing. To overcome this, the maximum parcel size was controlled
by splitting too big parcels (larger than 1000 voxels) according to a balanced
partionning which also guarantees the spatial connexity and thus properly sat-
isfies the above-mentioned assumptions on the HRF. In practice, the parallel
implementation with soma-workflow required a straightforward and light deve-
lopment task (script of 150 lines in one afternoon), which mainly consisted in
linking several commands and defining their input/outputs files. A hierarchical
workflow was constructed to handle all the steps of the JDE procedure, namely:
data splitting into parcel data sets, parcel-wise parallel detection-estimation pro-
cesses and merging of parcel results. Initially, a whole brain analysis lasted 10
hours on a single CPU and boiled down to 15 mins with soma-workflow on a 192
cores cluster. Consequently, a group study comprising 20 subjects and several
acquisitions was performed within one day.

3.2 Pipeline optimization and large dataset processing

The improvement of an algorithm robustness, namely the reduction of its sen-
sitivity to variability, can take advantage of a unified interface to make use of
various parallel computing resources. In medical imaging, a lot of sources of vari-
ability can be encountered, among others acquisition modality, scanner manufac-
turer, acquisition parameters and scanner environment. A special consideration
for the robustness of algorithms is thus required when an image analysis tech-
nique is intended to be used on images coming from many acquisition facilities.
This work involves an ever growing database containing images covering as much



variability as possible. During the design of the image processing algorithm, ev-
ery improvement made for a specific subset of the database must be applied on
the whole data set to assess that no regression is introduced by the modification.
In this process, the developer needs to use two kinds of computing resources. The
first is a fast responding computing resource with little parallelization (such as
a multiple core workstation) for running the algorithm on small subsets of data.
The second is a large parallel resource (such as a cluster or a grid) for testing
the algorithm on the entire database.

With soma-workflow, the parallelization code is independent of the comput-
ing resource. It allows the user to choose the most appropriate resource each
time an algorithm (or series of algorithms) has to be run. Moreover, using soma-
workflow in association with a pipeline software such as BrainVISA [1] makes
it even easier to process large datasets. The creation of pipeline iterations in-
cluding the parallelization and the data management is handled by BrainVISA
and converted to a low level workflow, the execution is then performed by soma-
workflow.

Soma-workflow has been used with BrainVISA to improve the robustness of
the Morphologist pipeline of BrainVISA. This pipeline extracts the main brain
structures (hemispheres, gray/white matter, cortical surface, cortical folds, etc.)
from a T1-weighted MR image. The goal is to produce good quality segmenta-
tions regardless of acquisition parameters and image quality. Step by step the
algorithm was tested on a total of about a thousand of T1 MR images. We made
up a high variability sample database containing 80 T1 MR images picked up
from various databases. Each time a new set of images produces a bad segmen-
tation, some steps of the algorithm are improved. The whole pipeline is then
tested anew on the sample database and additional tests on larger datasets can
be carried out. During the pipeline improvement, preliminary tests can be done
on a simple workstation. Indeed, the changes often concerns only isolated steps
of the pipeline and the computational process for one subject takes about 15
to 20 minutes for the entire pipeline. However, tests on larger databases require
the use of larger computing resources: the whole pipeline applied to the single
sample database (80 images) takes about 23 hours on a single processor. This
time is reduced to about an hour using soma-workflow on a 192 core cluster
depending on the cluster occupation.

3.3 Extensive validation of cortical sulci identification model

The validation and comparison of methods are a complex but crucial steps in the
research process. The increased availability of parallel resources makes it easier.
The demonstration is done here with the presentation of an extensive cross-
validation of the older cortical sulci identification models of BrainVISA [15].

The sulci identification model uses a congregation of about 260 artificial
neural networks for a brain hemisphere. Each neural network is responsible for
a local aspect of the recognition. Compared to the implementation in [15], we
used SVM-based models [16]. A Markovian relaxation is responsible for the global
coherence of the identification. Each neural model is trained using a supervised



learning scheme, based on a learning database of 62 manually identified brains
[17]. The generalization capacity of the model had previously been estimated
on a single, very limited, dataset. But a complete assessment involves a leave-
one-out cross-validation of the models on the learning database (Fig. 2). This
requires the training and test of 62 different complete models. The complete
validation represented about 5500 hours of computing (more than 7 months),
and used about 70000 individual jobs. It ran in about 3 days using approximately
100 cores of a 192-cores cluster.

Fig. 2. Workflow graph of the sulcal model validation application. Gray boxes are the
jobs, white boxes are the main data used or produced by the jobs. 62 different databases
are used, each of them being composed of the whole database except one subject, and
being used to train a recognition model.

The validation provided reliable generalization recognition rates, which brings
a precise idea of the performance of the model, and allows comparisons with dif-
ferent models such as the newer methods by Perrot [17] built from the same
learning database.

This work was done using BrainVISA and soma-workflow. It is interesting
to note the dynamic nature of the workflow (Fig. 2). Indeed, the number of
neural models may slightly vary from one learning base to another, thus the
number of jobs is not known before the first steps of the workflow are executed.
The execution of such a workflow was handled simply using the soma-workflow
Python API which enables us to wait for jobs or workflows and submit new
jobs or workflows when needed. In client-server mode, the client disconnection
during the workflow execution is however forbidden using this scheme, since the
execution is driven by the client application. To overcome this limitation, the
possibility to create dynamic workflows will be added to soma-workflow in the
future.

4 Conclusion

Soma-workflow is an application which handles the execution of low level work-
flows on multiple core machines and clusters. Its advanced features as well as its
unique position, between computing resources and user or high level workflow
software, makes it useful in a broad range of situations. The three neuroimaging
use cases presented here demonstrate its relevance in the research process.
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