deepsulci.sulci_labeling.capsul.labeling.SulciDeepLabeling¶
SulciDeepLabeling¶
Process to label a new graph using a 3D U-Net convolutional neural network.
The process can work using a GPU or on CPU. It requires a fair amount of RAM memory (about 4-5 GB). If not enough memory can be allocated, the process will abort with an error (thus will not hang the whole machine).
Note
- Type ‘SulciDeepLabeling.help()’ for a full description of this process parameters.
- Type ‘<SulciDeepLabeling>.get_input_spec()’ for a full description of this process input trait types.
- Type ‘<SulciDeepLabeling>.get_output_spec()’ for a full description of this process output trait types.
Inputs¶
[Mandatory]
- graph: a file name ([‘File’] - mandatory)
- input graph to segment
- roots: a file name ([‘File’] - mandatory)
- root file corresponding to the input graph
- model_file: a file name ([‘File’] - mandatory)
- file (.mdsm) storing neural network parameters
- param_file: a file name ([‘File’] - mandatory)
- file (.json) storing the hyperparameters (cutting threshold)
- rebuild_attributes: a boolean ([‘Bool’] - mandatory)
- No description.
- skeleton: a file name ([‘File’] - mandatory)
- skeleton file corresponding to the input graph
- allow_multithreading: a boolean ([‘Bool’] - mandatory)
- No description.
- cuda: an integer (int or long) ([‘Int’] - mandatory)
- device on which to run the training(-1 for cpu, i>=0 for the i-th gpu)
- fix_random_seed: a boolean ([‘Bool’] - mandatory)
- Use same random sequence
Outputs¶
- labeled_graph: a file name ([‘File (filename: input)’] - mandatory)
- output labeled graph