deepsulci.sulci_labeling.capsul.labeling.SulciDeepLabeling

SulciDeepLabeling

Process to label a new graph using a 3D U-Net convolutional neural network.

The process can work using a GPU or on CPU. It requires a fair amount of RAM memory (about 4-5 GB). If not enough memory can be allocated, the process will abort with an error (thus will not hang the whole machine).

Note

  • Type ‘SulciDeepLabeling.help()’ for a full description of this process parameters.
  • Type ‘<SulciDeepLabeling>.get_input_spec()’ for a full description of this process input trait types.
  • Type ‘<SulciDeepLabeling>.get_output_spec()’ for a full description of this process output trait types.

Inputs

[Mandatory]

graph: a file name ([‘File’] - mandatory)
input graph to segment
roots: a file name ([‘File’] - mandatory)
root file corresponding to the input graph
model_file: a file name ([‘File’] - mandatory)
file (.mdsm) storing neural network parameters
param_file: a file name ([‘File’] - mandatory)
file (.json) storing the hyperparameters (cutting threshold)
rebuild_attributes: a boolean ([‘Bool’] - mandatory)
No description.
skeleton: a file name ([‘File’] - mandatory)
skeleton file corresponding to the input graph
allow_multithreading: a boolean ([‘Bool’] - mandatory)
No description.
cuda: an integer (int or long) ([‘Int’] - mandatory)
device on which to run the training(-1 for cpu, i>=0 for the i-th gpu)
fix_random_seed: a boolean ([‘Bool’] - mandatory)
Use same random sequence

Outputs

labeled_graph: a file name ([‘File (filename: input)’] - mandatory)
output labeled graph