Source code for deepsulci.deeptools.early_stopping
# -*- coding: utf-8 -*-
from __future__ import print_function
from __future__ import absolute_import
import numpy as np
import torch
[docs]class EarlyStopping(object):
"""
Early stops the training if validation loss doesn't improve after
a given patience.
"""
def __init__(self, patience=7, verbose=False):
"""
Args:
patience (int): How long to wait after last time validation
loss improved.
Default: 7
verbose (bool): If True, prints a message for each validation
loss improvement.
Default: False
"""
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf
def __call__(self, val_loss, model):
score = -val_loss
if self.best_score is None:
self.best_score = score
self.save_checkpoint(val_loss, model)
elif score < self.best_score:
self.counter += 1
print('EarlyStopping counter: %i out of %i' %
(self.counter, self.patience))
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(val_loss, model)
self.counter = 0
[docs] def save_checkpoint(self, val_loss, model):
'''Saves model when validation loss decrease.'''
if self.verbose:
print('Validation loss decreased (%.6f -> %.6f). Saving model...' %
(self.val_loss_min, val_loss))
torch.save(model.state_dict(), 'checkpoint.pt')
self.val_loss_min = val_loss