The class for Kohonen's self organizing maps.
More...
#include <aims/neuralnet/selforganizingmap.h>
The class for Kohonen's self organizing maps.
Definition at line 46 of file selforganizingmap.h.
◆ AimsSelfOrganizingMap() [1/2]
AimsSelfOrganizingMap::AimsSelfOrganizingMap |
( |
int |
size, |
|
|
int |
ninputs, |
|
|
float |
learningrate |
|
) |
| |
Constructor for virgin SOM.
- Parameters
-
size | size of the square grid of neurons |
ninputs | number of inputs on each neuron |
learningrate | learning rate |
◆ AimsSelfOrganizingMap() [2/2]
AimsSelfOrganizingMap::AimsSelfOrganizingMap |
( |
const AimsData< float > & |
weight, |
|
|
float |
learningrate |
|
) |
| |
Constructor for learned SOM.
- Parameters
-
weight | weight data for all the neurons |
learningrate | learning rate |
◆ ~AimsSelfOrganizingMap()
virtual AimsSelfOrganizingMap::~AimsSelfOrganizingMap |
( |
| ) |
|
|
virtual |
Destructor deletes the weight data.
◆ counter()
int AimsSelfOrganizingMap::counter |
( |
| ) |
const |
Return the number of epochs during the learning step.
◆ learn()
void AimsSelfOrganizingMap::learn |
( |
const AimsData< float > & |
base, |
|
|
int |
counter |
|
) |
| |
Send a learning step from a data base.
- Parameters
-
base | the base is a 2D-data where the x coordinate corresponds to the index of the example and the y coordinate corresponds to the input of the neuron |
counter | number of epoch to iterate the process |
◆ learningRate()
float AimsSelfOrganizingMap::learningRate |
( |
| ) |
const |
Return the learning rate of the network.
◆ nInputs()
int AimsSelfOrganizingMap::nInputs |
( |
| ) |
const |
Return the number of inputs of the network on each neuron.
◆ save()
void AimsSelfOrganizingMap::save |
( |
const std::string & |
filename | ) |
|
Save all the weights in a GIS file.
◆ setLearningRate()
void AimsSelfOrganizingMap::setLearningRate |
( |
float |
learningrate | ) |
|
Set the learning rate of the network.
◆ size()
int AimsSelfOrganizingMap::size |
( |
| ) |
const |
Return the size of the network.
◆ test()
Test a data base and return the result.
- Parameters
-
base | the base is a 2D-data where the x coordinate corresponds to the index of the example and the y coordinate corresponds to the input of the neuron |
- Returns
- a 2D-data containing the winner in the grid for each example of the base
◆ update()
void AimsSelfOrganizingMap::update |
( |
const AimsData< float > & |
input, |
|
|
float |
learn, |
|
|
int |
delta |
|
) |
| |
|
protected |
Do a learning step.
- Parameters
-
input | input example |
learn | learning rate |
delta | width of the square neighborhood of neurons to update around the winner |
◆ winner()
Get the winner neuron for a given input.
◆ _counter
int AimsSelfOrganizingMap::_counter |
|
protected |
◆ _learningRate
float AimsSelfOrganizingMap::_learningRate |
|
protected |
◆ _nInputs
int AimsSelfOrganizingMap::_nInputs |
|
protected |
◆ _size
int AimsSelfOrganizingMap::_size |
|
protected |
◆ _weight
AimsData<float>* AimsSelfOrganizingMap::_weight |
|
protected |
The documentation for this class was generated from the following file: