![]() |
aimsalgo
5.0.5
Neuroimaging image processing
|
#include <aims/signalfilter/ggradient.h>
Public Member Functions | |
GaussianGradient (float sx=1.0f, float sy=1.0f, float sz=1.0f) | |
virtual | ~GaussianGradient () |
AimsData< float > | doit (const AimsData< T > &) |
AimsVector< AimsData< float >, 3 > | doitGradientVector (const AimsData< T > &data) |
Definition at line 46 of file ggradient.h.
|
inline |
Definition at line 64 of file ggradient.h.
References ASSERT.
|
inlinevirtual |
Definition at line 51 of file ggradient.h.
References GaussianGradient< T >::doit(), and GaussianGradient< T >::doitGradientVector().
|
inline |
Definition at line 74 of file ggradient.h.
References AimsData< float >::clone(), carto::Converter< class, class >::convert(), AimsData< T >::dimT(), AimsData< T >::dimX(), AimsData< T >::dimY(), AimsData< T >::dimZ(), GaussianLines::doit(), GaussianColumns::doit(), GCoef::gradient, AimsData< T >::sizeX(), AimsData< T >::sizeY(), and AimsData< T >::sizeZ().
Referenced by aims::PeronaMalikSmoother< T >::doSmoothing(), and GaussianGradient< T >::~GaussianGradient().
|
inline |
Definition at line 129 of file ggradient.h.
References AimsData< float >::clone(), carto::Converter< class, class >::convert(), AimsData< T >::dimT(), AimsData< T >::dimX(), AimsData< T >::dimY(), AimsData< T >::dimZ(), GaussianLines::doit(), GaussianColumns::doit(), GCoef::gradient, AimsData< T >::sizeX(), AimsData< T >::sizeY(), and AimsData< T >::sizeZ().
Referenced by GaussianGradient< T >::~GaussianGradient().