![]() |
aimsalgo
5.0.5
Neuroimaging image processing
|
#include <aims/math/ppca.h>
Public Member Functions | |
| ProbabilisticPca (const AimsData< T > &data, const std::vector< std::list< Point3d > > &classes, int nbOfSignificantEigenValues, const std::vector< double > &PIj=std::vector< double >()) | |
| ~ProbabilisticPca () | |
| std::vector< double > | posteriorProbabilities (const AimsData< double > &x, double px, std::vector< double > &maxProbaByClass) |
| std::vector< double > | andersonScores (const AimsData< double > &x, double px, std::vector< double > &maxProbaByClass) |
| int | affectedTo (const AimsData< double > &x) |
| bool | classification (const AimsData< T > &dynamicImage, const AimsData< byte > &mask, AimsData< short > &segmented) |
| bool | fuzzyClassification (const AimsData< T > &dynamicImage, const AimsData< byte > &mask, AimsData< float > &fuzzySegmented, double thresholdOnMaxPercentage=0., double andersonScoreThreshold=0.2, const AimsData< double > &indivPriorProbabilities=aims::AimsFastAllocationData< double >()) |
| float | posteriorProbability (const AimsData< double > &x, float pX, unsigned int classNb) |
| double | pX (const AimsData< double > &x) |
| short | nbOfClasses () const |
| aims::ProbabilisticPca< T >::ProbabilisticPca | ( | const AimsData< T > & | data, |
| const std::vector< std::list< Point3d > > & | classes, | ||
| int | nbOfSignificantEigenValues, | ||
| const std::vector< double > & | PIj = std::vector<double>() |
||
| ) |
Definition at line 416 of file ppca_d.h.
References aims::ProbabilisticPcaElement::doIt(), aims::ProbabilisticPcaElement::eigenValues(), norm2(), aims::ProbabilisticPcaElement::normFactor(), and aims::Writer< T >::write().
|
inline |
Definition at line 135 of file ppca.h.
References aims::mask().
| int aims::ProbabilisticPca< T >::affectedTo | ( | const AimsData< double > & | x | ) |
Definition at line 561 of file ppca_d.h.
Referenced by aims::ProbabilisticPca< T >::classification().
| std::vector< double > aims::ProbabilisticPca< T >::andersonScores | ( | const AimsData< double > & | x, |
| double | px, | ||
| std::vector< double > & | maxProbaByClass | ||
| ) |
Definition at line 504 of file ppca_d.h.
Referenced by aims::ProbabilisticPca< T >::fuzzyClassification().
| bool aims::ProbabilisticPca< T >::classification | ( | const AimsData< T > & | dynamicImage, |
| const AimsData< byte > & | mask, | ||
| AimsData< short > & | segmented | ||
| ) |
Definition at line 583 of file ppca_d.h.
References aims::ProbabilisticPca< T >::affectedTo(), AimsData< T >::dimT(), AimsData< T >::dimX(), AimsData< T >::dimY(), AimsData< T >::dimZ(), ForEach3d, aims::mask(), and AimsData< T >::setSizeXYZT().
| bool aims::ProbabilisticPca< T >::fuzzyClassification | ( | const AimsData< T > & | dynamicImage, |
| const AimsData< byte > & | mask, | ||
| AimsData< float > & | fuzzySegmented, | ||
| double | thresholdOnMaxPercentage = 0., |
||
| double | andersonScoreThreshold = 0.2, |
||
| const AimsData< double > & | indivPriorProbabilities = aims::AimsFastAllocationData<double>() |
||
| ) |
Definition at line 620 of file ppca_d.h.
References aims::ProbabilisticPca< T >::andersonScores(), AimsData< float >::dimT(), AimsData< T >::dimT(), AimsData< float >::dimX(), AimsData< T >::dimX(), AimsData< float >::dimY(), AimsData< T >::dimY(), AimsData< float >::dimZ(), AimsData< T >::dimZ(), ForEach3d, aims::mask(), aims::meshdistance::max(), norm(), AimsData< float >::setSizeXYZT(), and aims::Writer< T >::write().
|
inline |
Definition at line 167 of file ppca.h.
References aims::ProbabilisticPcaElement::_distanceRef, aims::ProbabilisticPcaElement::_PIj, and norm2().
| std::vector< double > aims::ProbabilisticPca< T >::posteriorProbabilities | ( | const AimsData< double > & | x, |
| double | px, | ||
| std::vector< double > & | maxProbaByClass | ||
| ) |
|
inline |
Definition at line 157 of file ppca.h.
Referenced by aims::ProbabilisticPca< T >::pX().
| double aims::ProbabilisticPca< T >::pX | ( | const AimsData< double > & | x | ) |
Definition at line 722 of file ppca_d.h.
References aims::ProbabilisticPca< T >::posteriorProbability().