aimsalgo  5.0.5
Neuroimaging image processing
aims::ProbabilisticPca< T > Class Template Reference

#include <aims/math/ppca.h>

Public Member Functions

 ProbabilisticPca (const AimsData< T > &data, const std::vector< std::list< Point3d > > &classes, int nbOfSignificantEigenValues, const std::vector< double > &PIj=std::vector< double >())
 
 ~ProbabilisticPca ()
 
std::vector< double > posteriorProbabilities (const AimsData< double > &x, double px, std::vector< double > &maxProbaByClass)
 
std::vector< double > andersonScores (const AimsData< double > &x, double px, std::vector< double > &maxProbaByClass)
 
int affectedTo (const AimsData< double > &x)
 
bool classification (const AimsData< T > &dynamicImage, const AimsData< byte > &mask, AimsData< short > &segmented)
 
bool fuzzyClassification (const AimsData< T > &dynamicImage, const AimsData< byte > &mask, AimsData< float > &fuzzySegmented, double thresholdOnMaxPercentage=0., double andersonScoreThreshold=0.2, const AimsData< double > &indivPriorProbabilities=aims::AimsFastAllocationData< double >())
 
float posteriorProbability (const AimsData< double > &x, float pX, unsigned int classNb)
 
double pX (const AimsData< double > &x)
 
short nbOfClasses () const
 

Detailed Description

template<class T>
class aims::ProbabilisticPca< T >

Definition at line 127 of file ppca.h.

Constructor & Destructor Documentation

◆ ProbabilisticPca()

template<class T >
aims::ProbabilisticPca< T >::ProbabilisticPca ( const AimsData< T > &  data,
const std::vector< std::list< Point3d > > &  classes,
int  nbOfSignificantEigenValues,
const std::vector< double > &  PIj = std::vector<double>() 
)

◆ ~ProbabilisticPca()

template<class T >
aims::ProbabilisticPca< T >::~ProbabilisticPca ( )
inline

Definition at line 135 of file ppca.h.

References aims::mask().

Member Function Documentation

◆ affectedTo()

template<class T >
int aims::ProbabilisticPca< T >::affectedTo ( const AimsData< double > &  x)

Definition at line 561 of file ppca_d.h.

Referenced by aims::ProbabilisticPca< T >::classification().

◆ andersonScores()

template<class T >
std::vector< double > aims::ProbabilisticPca< T >::andersonScores ( const AimsData< double > &  x,
double  px,
std::vector< double > &  maxProbaByClass 
)

Definition at line 504 of file ppca_d.h.

Referenced by aims::ProbabilisticPca< T >::fuzzyClassification().

◆ classification()

template<class T >
bool aims::ProbabilisticPca< T >::classification ( const AimsData< T > &  dynamicImage,
const AimsData< byte > &  mask,
AimsData< short > &  segmented 
)

◆ fuzzyClassification()

template<class T >
bool aims::ProbabilisticPca< T >::fuzzyClassification ( const AimsData< T > &  dynamicImage,
const AimsData< byte > &  mask,
AimsData< float > &  fuzzySegmented,
double  thresholdOnMaxPercentage = 0.,
double  andersonScoreThreshold = 0.2,
const AimsData< double > &  indivPriorProbabilities = aims::AimsFastAllocationData<double>() 
)

◆ nbOfClasses()

template<class T >
short aims::ProbabilisticPca< T >::nbOfClasses ( ) const
inline

◆ posteriorProbabilities()

template<class T >
std::vector< double > aims::ProbabilisticPca< T >::posteriorProbabilities ( const AimsData< double > &  x,
double  px,
std::vector< double > &  maxProbaByClass 
)

Definition at line 535 of file ppca_d.h.

◆ posteriorProbability()

template<class T >
float aims::ProbabilisticPca< T >::posteriorProbability ( const AimsData< double > &  x,
float  pX,
unsigned int  classNb 
)
inline

Definition at line 157 of file ppca.h.

Referenced by aims::ProbabilisticPca< T >::pX().

◆ pX()

template<class T >
double aims::ProbabilisticPca< T >::pX ( const AimsData< double > &  x)

Definition at line 722 of file ppca_d.h.

References aims::ProbabilisticPca< T >::posteriorProbability().


The documentation for this class was generated from the following files: