aimsalgo  5.0.5
Neuroimaging image processing
levmrq.h
Go to the documentation of this file.
1 /* This software and supporting documentation are distributed by
2  * Institut Federatif de Recherche 49
3  * CEA/NeuroSpin, Batiment 145,
4  * 91191 Gif-sur-Yvette cedex
5  * France
6  *
7  * This software is governed by the CeCILL-B license under
8  * French law and abiding by the rules of distribution of free software.
9  * You can use, modify and/or redistribute the software under the
10  * terms of the CeCILL-B license as circulated by CEA, CNRS
11  * and INRIA at the following URL "http://www.cecill.info".
12  *
13  * As a counterpart to the access to the source code and rights to copy,
14  * modify and redistribute granted by the license, users are provided only
15  * with a limited warranty and the software's author, the holder of the
16  * economic rights, and the successive licensors have only limited
17  * liability.
18  *
19  * In this respect, the user's attention is drawn to the risks associated
20  * with loading, using, modifying and/or developing or reproducing the
21  * software by the user in light of its specific status of free software,
22  * that may mean that it is complicated to manipulate, and that also
23  * therefore means that it is reserved for developers and experienced
24  * professionals having in-depth computer knowledge. Users are therefore
25  * encouraged to load and test the software's suitability as regards their
26  * requirements in conditions enabling the security of their systems and/or
27  * data to be ensured and, more generally, to use and operate it in the
28  * same conditions as regards security.
29  *
30  * The fact that you are presently reading this means that you have had
31  * knowledge of the CeCILL-B license and that you accept its terms.
32  */
33 
34 
35 #ifndef AIMS_OPTIMIZATION_LEVMRQ_H
36 #define AIMS_OPTIMIZATION_LEVMRQ_H
37 
39 #include <aims/def/general.h>
40 #include <aims/math/gaussj.h>
43 
44 template <class T> class AimsData;
45 
46 
47 template < class T >
49 {
50 public:
51 
52  LevenbergMarquardt( LMFunction< T > *lmf ) { lmFonc = lmf; }
53  virtual ~LevenbergMarquardt() { }
54 
56  AimsData< T > *sig=NULL, AimsData< int > *ia=NULL,
57  AimsData< T > *covar=NULL );
58 
59 private:
60 
61  GaussJordan< T > gaussj;
63 
64  LMFunction< T > *lmFonc;
65 
66  bool mrqmin( AimsData< T >&, AimsData< T >&, AimsData< T >&,
68 
69  void mrqcof( AimsData< T >&, AimsData< T >&, AimsData< T >&,
71 };
72 
73 #endif
LMFunction< T > * doit(AimsData< T > &, AimsData< T > &, AimsData< T > *sig=NULL, AimsData< int > *ia=NULL, AimsData< T > *covar=NULL)
virtual ~LevenbergMarquardt()
Definition: levmrq.h:53
LevenbergMarquardt(LMFunction< T > *lmf)
Definition: levmrq.h:52