aimsalgo  5.0.5
Neuroimaging image processing
lm2gauss.h
Go to the documentation of this file.
1 /* This software and supporting documentation are distributed by
2  * Institut Federatif de Recherche 49
3  * CEA/NeuroSpin, Batiment 145,
4  * 91191 Gif-sur-Yvette cedex
5  * France
6  *
7  * This software is governed by the CeCILL-B license under
8  * French law and abiding by the rules of distribution of free software.
9  * You can use, modify and/or redistribute the software under the
10  * terms of the CeCILL-B license as circulated by CEA, CNRS
11  * and INRIA at the following URL "http://www.cecill.info".
12  *
13  * As a counterpart to the access to the source code and rights to copy,
14  * modify and redistribute granted by the license, users are provided only
15  * with a limited warranty and the software's author, the holder of the
16  * economic rights, and the successive licensors have only limited
17  * liability.
18  *
19  * In this respect, the user's attention is drawn to the risks associated
20  * with loading, using, modifying and/or developing or reproducing the
21  * software by the user in light of its specific status of free software,
22  * that may mean that it is complicated to manipulate, and that also
23  * therefore means that it is reserved for developers and experienced
24  * professionals having in-depth computer knowledge. Users are therefore
25  * encouraged to load and test the software's suitability as regards their
26  * requirements in conditions enabling the security of their systems and/or
27  * data to be ensured and, more generally, to use and operate it in the
28  * same conditions as regards security.
29  *
30  * The fact that you are presently reading this means that you have had
31  * knowledge of the CeCILL-B license and that you accept its terms.
32  */
33 
34 
35 #ifndef AIMS_OPTIMIZATION_LM2GAUSS_H
36 #define AIMS_OPTIMIZATION_LM2GAUSS_H
37 
39 
40 
41 template < class T >
42 class LM2Gaussian : public LMFunction< T >
43 {
44 public:
45 
46  LM2Gaussian( T k1=(T)1.0, T m1=(T)0.0, T s1=(T)1.0,
47  T k2=(T)1.0, T m2=(T)0.0, T s2=(T)1.0 );
48 
49  T apply( T );
50  T eval( T );
51 };
52 
53 
54 template< class T > inline
55 LM2Gaussian< T >::LM2Gaussian( T k1, T m1, T s1, T k2, T m2, T s2 )
56  : LMFunction< T >()
57 {
58  this->par.push_back( k1 );
59  this->par.push_back( m1 );
60  this->par.push_back( s1 );
61  this->par.push_back( k2 );
62  this->par.push_back( m2 );
63  this->par.push_back( s2 );
64 
65  this->der = std::vector< T >( 6 );
66 }
67 
68 
69 
70 template< class T > inline
72 {
73  T y = (T)0;
74 
75  for ( int i=0; i<6; i+=3 )
76  {
77  T arg = ( x - this->par[ i + 1 ] ) / this->par[ i + 2 ];
78  T ex = (T)exp( -1.0 * ( arg * arg ) );
79  T fac = (T)2 * this->par[ i ] * ex * arg;
80 
81  y += this->par[ i ] * ex;
82 
83  this->der[ i ] = ex;
84  this->der[ i + 1 ] = fac / this->par[ i + 2 ];
85  this->der[ i + 2 ] = fac * arg / this->par[ i + 2 ];
86  }
87 
88  return y;
89 }
90 
91 
92 template< class T > inline
94 {
95  T y = (T)0;
96 
97  for ( int i=0; i<6; i+=3 )
98  {
99  T arg = ( x - this->par[ i + 1 ] ) / this->par[ i + 2 ];
100 
101  y += this->par[ i ] * (T)exp( -1.0 * ( arg * arg ) );
102  }
103 
104  return y;
105 }
106 
107 #endif
LM2Gaussian(T k1=(T) 1.0, T m1=(T) 0.0, T s1=(T) 1.0, T k2=(T) 1.0, T m2=(T) 0.0, T s2=(T) 1.0)
Definition: lm2gauss.h:55
std::vector< T > der
Definition: lmfunc.h:59
T apply(T)
Definition: lm2gauss.h:93
std::vector< T > par
Definition: lmfunc.h:54
T eval(T)
Definition: lm2gauss.h:71