aimsalgo  5.0.5
Neuroimaging image processing
lmgauss.h
Go to the documentation of this file.
1 /* This software and supporting documentation are distributed by
2  * Institut Federatif de Recherche 49
3  * CEA/NeuroSpin, Batiment 145,
4  * 91191 Gif-sur-Yvette cedex
5  * France
6  *
7  * This software is governed by the CeCILL-B license under
8  * French law and abiding by the rules of distribution of free software.
9  * You can use, modify and/or redistribute the software under the
10  * terms of the CeCILL-B license as circulated by CEA, CNRS
11  * and INRIA at the following URL "http://www.cecill.info".
12  *
13  * As a counterpart to the access to the source code and rights to copy,
14  * modify and redistribute granted by the license, users are provided only
15  * with a limited warranty and the software's author, the holder of the
16  * economic rights, and the successive licensors have only limited
17  * liability.
18  *
19  * In this respect, the user's attention is drawn to the risks associated
20  * with loading, using, modifying and/or developing or reproducing the
21  * software by the user in light of its specific status of free software,
22  * that may mean that it is complicated to manipulate, and that also
23  * therefore means that it is reserved for developers and experienced
24  * professionals having in-depth computer knowledge. Users are therefore
25  * encouraged to load and test the software's suitability as regards their
26  * requirements in conditions enabling the security of their systems and/or
27  * data to be ensured and, more generally, to use and operate it in the
28  * same conditions as regards security.
29  *
30  * The fact that you are presently reading this means that you have had
31  * knowledge of the CeCILL-B license and that you accept its terms.
32  */
33 
34 
35 #ifndef AIMS_OPTIMIZATION_LMGAUSS_H
36 #define AIMS_OPTIMIZATION_LMGAUSS_H
37 
39 
40 
41 template < class T >
42 class LMGaussian : public LMFunction< T >
43 {
44 public:
45 
46  LMGaussian( T k=(T)1.0, T m=(T)0.0, T s=(T)1.0 );
47 
48  T apply( T );
49  T eval( T );
50 };
51 
52 
53 template< class T > inline
54 LMGaussian< T >::LMGaussian( T k, T m, T s ) : LMFunction< T >()
55 {
56  this->par.push_back( k );
57  this->par.push_back( m );
58  this->par.push_back( s );
59 
60  this->der = std::vector< T >( 3 );
61 }
62 
63 
64 
65 template< class T > inline
67 {
68  T arg = ( x - this->par[ 1 ] ) / this->par[ 2 ];
69  T ex = (T)exp( -1.0 * (arg * arg ) );
70  T fac = (T)2 * this->par[ 0 ] * ex * arg;
71 
72  this->der[ 0 ] = ex;
73  this->der[ 1 ] = fac / this->par[ 2 ];
74  this->der[ 2 ] = fac * arg / this->par[ 2 ];
75 
76  return this->par[ 0 ] * ex;
77 }
78 
79 
80 template< class T > inline
82 {
83  T arg = ( x - this->par[ 1 ] ) / this->par[ 2 ];
84 
85  return this->par[ 0 ] * (T)exp( -1.0 * ( arg * arg ) );
86 }
87 
88 #endif
T apply(T)
Definition: lmgauss.h:81
std::vector< T > der
Definition: lmfunc.h:59
LMGaussian(T k=(T) 1.0, T m=(T) 0.0, T s=(T) 1.0)
Definition: lmgauss.h:54
T eval(T)
Definition: lmgauss.h:66
std::vector< T > par
Definition: lmfunc.h:54