aimsalgo 6.0.0
Neuroimaging image processing
ggradient.h
Go to the documentation of this file.
1/* This software and supporting documentation are distributed by
2 * Institut Federatif de Recherche 49
3 * CEA/NeuroSpin, Batiment 145,
4 * 91191 Gif-sur-Yvette cedex
5 * France
6 *
7 * This software is governed by the CeCILL-B license under
8 * French law and abiding by the rules of distribution of free software.
9 * You can use, modify and/or redistribute the software under the
10 * terms of the CeCILL-B license as circulated by CEA, CNRS
11 * and INRIA at the following URL "http://www.cecill.info".
12 *
13 * As a counterpart to the access to the source code and rights to copy,
14 * modify and redistribute granted by the license, users are provided only
15 * with a limited warranty and the software's author, the holder of the
16 * economic rights, and the successive licensors have only limited
17 * liability.
18 *
19 * In this respect, the user's attention is drawn to the risks associated
20 * with loading, using, modifying and/or developing or reproducing the
21 * software by the user in light of its specific status of free software,
22 * that may mean that it is complicated to manipulate, and that also
23 * therefore means that it is reserved for developers and experienced
24 * professionals having in-depth computer knowledge. Users are therefore
25 * encouraged to load and test the software's suitability as regards their
26 * requirements in conditions enabling the security of their systems and/or
27 * data to be ensured and, more generally, to use and operate it in the
28 * same conditions as regards security.
29 *
30 * The fact that you are presently reading this means that you have had
31 * knowledge of the CeCILL-B license and that you accept its terms.
32 */
33
34
35
36#ifndef AIMS_SIGNALFILTER_GGRADIENT_H
37#define AIMS_SIGNALFILTER_GGRADIENT_H
38
39#include <aims/utility/converter_volume.h>
43
44
45template< class T >
47{
48public:
49
50 GaussianGradient( float sx=1.0f, float sy=1.0f, float sz=1.0f );
51 virtual ~GaussianGradient() { }
52
55 const carto::rc_ptr<carto::Volume< T > >& data ) ;
56private:
57
58 float sigx;
59 float sigy;
60 float sigz;
61};
62
63
64template< class T > inline
65GaussianGradient< T >::GaussianGradient( float sx, float sy, float sz )
66 : sigx( sx ), sigy( sy ), sigz( sz )
67{
68 ASSERT( sigx >= 0.1f && sigx <= 100.0f );
69 ASSERT( sigy >= 0.1f && sigy <= 100.0f );
70 ASSERT( sigz >= 0.1f && sigz <= 100.0f );
71}
72
73
74template< class T > inline carto::VolumeRef< float >
76{
77 int x,y,z;
78 std::vector<float> vs = data->getVoxelSize();
79 float sx = sigx / vs[0];
80 float sy = sigy / vs[1];
81 float sz = sigz / vs[2];
82
85
87 imaF=carto::VolumeRef<float>( data->getSize() );
88 conv.convert( data, imaF );
89
90 for ( int i=0; i<3; i++ )
91 res[i]=imaF.copy();
92
93
94
96 grad=carto::VolumeRef<float>( data->getSize() );
97
98 GaussianSlices gsli;
99 GaussianLines glin;
100 GaussianColumns gcol;
101
102 // d / dx
103 glin.doit( res[ 0 ], GCoef( sx, GCoef::gradient ) );
104 gcol.doit( res[ 0 ], GCoef( sy ) ); // because default is smoothing
105 gsli.doit( res[ 0 ], GCoef( sz ) );
106
107 // d / dy
108 glin.doit( res[ 1 ], GCoef( sx ) );
109 gcol.doit( res[ 1 ], GCoef( sy, GCoef::gradient ) );
110 gsli.doit( res[ 1 ], GCoef( sz ) );
111
112 // d / dz
113 glin.doit( res[ 2 ], GCoef( sx ) );
114 gcol.doit( res[ 2 ], GCoef( sy ) );
115 gsli.doit( res[ 2 ], GCoef( sz, GCoef::gradient ) );
116
117 for (z=0; z< data->getSizeZ(); z++)
118 for (y=0; y< data->getSizeY(); y++)
119 for(x=0; x< data->getSizeX(); x++)
120 {
121 grad(x,y,z)=sqrt ( (res[0](x,y,z)*res[0](x,y,z))
122 + (res[1](x,y,z)*res[1](x,y,z))
123 + (res[2](x,y,z)*res[2](x,y,z)) );
124 }
125
126 return grad;
127}
128
129template< class T > inline AimsVector< carto::VolumeRef< float >, 3 >
131 const carto::rc_ptr<carto::Volume< T > >& data )
132{
133 std::vector<float> vs = data->getVoxelSize();
134 float sx = sigx / vs[0];
135 float sy = sigy / vs[1];
136 float sz = sigz / vs[2];
137
140
142 imaF=carto::VolumeRef<float>( data->getSize() );
143 conv.convert( data, imaF );
144
145 for ( int i=0; i<3; i++ )
146 res[i]=imaF.copy();
147
148
149
151 grad=carto::VolumeRef<float>( data->getSize() );
152
153 GaussianSlices gsli;
154 GaussianLines glin;
155 GaussianColumns gcol;
156
157 // d / dx
158 glin.doit( res[ 0 ], GCoef( sx, GCoef::gradient ) );
159 gcol.doit( res[ 0 ], GCoef( sy ) ); // because default is smoothing
160 gsli.doit( res[ 0 ], GCoef( sz ) );
161
162 // d / dy
163 glin.doit( res[ 1 ], GCoef( sx ) );
164 gcol.doit( res[ 1 ], GCoef( sy, GCoef::gradient ) );
165 gsli.doit( res[ 1 ], GCoef( sz ) );
166
167 // d / dz
168 glin.doit( res[ 2 ], GCoef( sx ) );
169 gcol.doit( res[ 2 ], GCoef( sy ) );
170 gsli.doit( res[ 2 ], GCoef( sz, GCoef::gradient ) );
171
172 return res ;
173}
174#endif
#define ASSERT(EX)
Definition gcoef.h:42
@ gradient
Definition gcoef.h:49
void doit(carto::rc_ptr< carto::Volume< float > > &)
carto::VolumeRef< float > doit(const carto::rc_ptr< carto::Volume< T > > &)
Definition ggradient.h:75
virtual ~GaussianGradient()
Definition ggradient.h:51
AimsVector< carto::VolumeRef< float >, 3 > doitGradientVector(const carto::rc_ptr< carto::Volume< T > > &data)
Definition ggradient.h:130
GaussianGradient(float sx=1.0f, float sy=1.0f, float sz=1.0f)
Definition ggradient.h:65
void doit(carto::rc_ptr< carto::Volume< float > > &)
void doit(carto::rc_ptr< carto::Volume< float > > &)
virtual void convert(const INP &in, OUTP &out) const
std::vector< float > getVoxelSize() const
VolumeRef< T > copy() const