aimsalgo 6.0.0
Neuroimaging image processing
iterativeclassification.h
Go to the documentation of this file.
1/* This software and supporting documentation are distributed by
2 * Institut Federatif de Recherche 49
3 * CEA/NeuroSpin, Batiment 145,
4 * 91191 Gif-sur-Yvette cedex
5 * France
6 *
7 * This software is governed by the CeCILL-B license under
8 * French law and abiding by the rules of distribution of free software.
9 * You can use, modify and/or redistribute the software under the
10 * terms of the CeCILL-B license as circulated by CEA, CNRS
11 * and INRIA at the following URL "http://www.cecill.info".
12 *
13 * As a counterpart to the access to the source code and rights to copy,
14 * modify and redistribute granted by the license, users are provided only
15 * with a limited warranty and the software's author, the holder of the
16 * economic rights, and the successive licensors have only limited
17 * liability.
18 *
19 * In this respect, the user's attention is drawn to the risks associated
20 * with loading, using, modifying and/or developing or reproducing the
21 * software by the user in light of its specific status of free software,
22 * that may mean that it is complicated to manipulate, and that also
23 * therefore means that it is reserved for developers and experienced
24 * professionals having in-depth computer knowledge. Users are therefore
25 * encouraged to load and test the software's suitability as regards their
26 * requirements in conditions enabling the security of their systems and/or
27 * data to be ensured and, more generally, to use and operate it in the
28 * same conditions as regards security.
29 *
30 * The fact that you are presently reading this means that you have had
31 * knowledge of the CeCILL-B license and that you accept its terms.
32 */
33
34
35
36#ifndef ITERATIVECLASSIFICATION_H
37#define ITERATIVECLASSIFICATION_H
38
41#include <aims/vector/vector.h>
42#include <vector>
43#include <list>
44
45namespace aims{
46 template <class T>
48 public:
49// enum ClassifMethod{
50// KMEANS,
51// DYNAMIC,
52// PCA
53// } ;
54
55 IterativeClassification( std::vector< std::list< Individuals<T> > >* classes,
56 int nbOfClasses, int maxNbOfRuns, double threshold,
57 bool classified, const ClassifStrategy<T>& strategy ) ;
59
60 void setClassifStrategy( const ClassifStrategy<T>& strategy,
61 bool keepPreviousResult = false ) ;
62 const std::vector< std::list< Individuals<T> > >& getClasses() ;
63 bool isCodeVectorsGiven() const
64 { return myClassifStrategy->isCodeVectorsGiven() ; }
66 { return myClassifStrategy->getMeanValue( classe ) ; }
67 std::vector< aims::Individuals<T> > getMeanVector() const
68 { return myClassifStrategy->getMeanVector() ; }
69
70 void initialization( std::vector< std::list< Individuals<T> > >& classes, int nbOfClasses ) ;
71 bool classification() ;
72
73 private:
74 std::vector< std::list< Individuals<T> > > myClasses ; // les classes d'individus
75 int myNbOfClasses ; // segmentation en N classes
76 int myMaxNbOfRuns ;
77 double myThreshold ;
78 bool myClassified ; // classification faite ou non?
79 ClassifStrategy<T>* myClassifStrategy ; // pointeur de classe ClassifStrategy
80 } ;
81}
82
83#endif
aims::Individuals< T > getMeanValue(int classe) const
void setClassifStrategy(const ClassifStrategy< T > &strategy, bool keepPreviousResult=false)
void initialization(std::vector< std::list< Individuals< T > > > &classes, int nbOfClasses)
std::vector< aims::Individuals< T > > getMeanVector() const
IterativeClassification(std::vector< std::list< Individuals< T > > > *classes, int nbOfClasses, int maxNbOfRuns, double threshold, bool classified, const ClassifStrategy< T > &strategy)
const std::vector< std::list< Individuals< T > > > & getClasses()