aimsalgo 6.0.0
Neuroimaging image processing
lms-estimator.h
Go to the documentation of this file.
1/* This software and supporting documentation are distributed by
2 * Institut Federatif de Recherche 49
3 * CEA/NeuroSpin, Batiment 145,
4 * 91191 Gif-sur-Yvette cedex
5 * France
6 *
7 * This software is governed by the CeCILL-B license under
8 * French law and abiding by the rules of distribution of free software.
9 * You can use, modify and/or redistribute the software under the
10 * terms of the CeCILL-B license as circulated by CEA, CNRS
11 * and INRIA at the following URL "http://www.cecill.info".
12 *
13 * As a counterpart to the access to the source code and rights to copy,
14 * modify and redistribute granted by the license, users are provided only
15 * with a limited warranty and the software's author, the holder of the
16 * economic rights, and the successive licensors have only limited
17 * liability.
18 *
19 * In this respect, the user's attention is drawn to the risks associated
20 * with loading, using, modifying and/or developing or reproducing the
21 * software by the user in light of its specific status of free software,
22 * that may mean that it is complicated to manipulate, and that also
23 * therefore means that it is reserved for developers and experienced
24 * professionals having in-depth computer knowledge. Users are therefore
25 * encouraged to load and test the software's suitability as regards their
26 * requirements in conditions enabling the security of their systems and/or
27 * data to be ensured and, more generally, to use and operate it in the
28 * same conditions as regards security.
29 *
30 * The fact that you are presently reading this means that you have had
31 * knowledge of the CeCILL-B license and that you accept its terms.
32 */
33
34
35#ifndef AIMS_ESTIMATION_LMS_ESTIMATOR_H
36#define AIMS_ESTIMATION_LMS_ESTIMATOR_H
37
38
40#include <cartodata/volume/volume.h>
41#include <aims/vector/vector.h>
42#include <aims/def/assert.h>
43#include <aims/math/gausslu.h>
45
46//
47// Linear Mean Squared M-estimator
48//
49template < int D >
50class LMSEstimator : public MEstimator< D >
51{
52 public:
54 virtual ~LMSEstimator() { }
55
56 void doit(
58 const carto::rc_ptr<carto::Volume< float > >& y, float& a,
60};
61
62
63template < int D > inline
64void
67 const carto::rc_ptr<carto::Volume< float > >& y, float& a,
69{
70 ASSERT( x->getSizeY() == 1 && x->getSizeZ() == 1 && x->getSizeT() == 1 );
71 ASSERT( y->getSizeY() == 1 && y->getSizeZ() == 1 && y->getSizeT() == 1 );
72 ASSERT( x->getSizeX() == y->getSizeX() );
73
74 int N = y->getSizeX();
75 carto::VolumeRef<float> mat( D + 1, D + 1 );
76 carto::VolumeRef<float> vec( D + 1 );
77
78 mat = 0.0;
79 vec = 0.0;
80 mat( 0, 0 ) = float( N );
81 int k, n;
82 for ( k = 1; k <= D; k++ )
83 {
84 for ( n = 0; n < N; n++ )
85 mat( k, 0 ) += x->at( n ).item( k - 1 );
86 mat( 0, k ) = mat( k, 0 );
87 }
88
89 int k1, k2;
90 for ( k1 = 1; k1 <= D; k1++ )
91 for ( k2 = 1; k2 <= k1; k2++ )
92 {
93 for ( n = 0; n < N; n++ )
94 mat( k1, k2 ) += x->at( n ).item( k1 - 1 ) * x->at( n ).item( k2 - 1 );
95 mat( k2, k1 ) = mat( k1, k2 );
96 }
97
98
99 for ( n = 0; n < N; n++ )
100 {
101 vec( 0 ) += y->at( n );
102 for ( k = 1; k <= D; k++ )
103 vec( k ) += y->at( n ) * x->at( n ).item( k - 1 );
104 }
105
107 a = res( 0 );
108 for ( k = 1; k <= D; k++ )
109 b.item( k - 1 ) = res( k );
110}
111
112
113#endif
#define ASSERT(EX)
const T & item(int d) const
virtual ~LMSEstimator()
void doit(const carto::rc_ptr< carto::Volume< AimsVector< float, D > > > &x, const carto::rc_ptr< carto::Volume< float > > &y, float &a, AimsVector< float, D > &b)
const T & at(long x, long y=0, long z=0, long t=0) const
carto::VolumeRef< float > AimsLinearResolutionLU(const carto::VolumeRef< float > &matrix, const carto::VolumeRef< float > &b)