aimstil  5.0.5
til::KeysInterpolation< T > Class Template Reference

Interpolation using Keys polynomial. More...

#include <til/KeysInterpolation.h>

Inheritance diagram for til::KeysInterpolation< T >:
Collaboration diagram for til::KeysInterpolation< T >:

Public Types

typedef KeysInterpolation Self
 

Static Public Member Functions

static T compute (T f1, T f2, T f3, T f4, T f5, T f6, T x)
 Returns the interpolated value of four numbers using the Keys method. More...
 

Detailed Description

template<typename T>
class til::KeysInterpolation< T >

Interpolation using Keys polynomial.

Computes the Keys interpolation of the sequence (f1, f2, f3, f4, f5, f6) (supposed to be equally spaced and at position (-2, -1, 0, 1, 2, 3)). 'x' is the position of the point where we want an interpolated value, and has to be in the range [0, 1].

The Keys spline is 4/3.x^3-7/3.x^2+1, -7/12.x^3 + 3.x^2-59/12.x+5/2, 1/12.x^3-2/3.x^2+7/4.x-3/2. It has been implemented using the factorization of (Meijering03) that needs the computation of only four cubic polynomial per point.

Definition at line 32 of file KeysInterpolation.h.

Member Typedef Documentation

◆ Self

template<typename T >
typedef KeysInterpolation til::KeysInterpolation< T >::Self

Definition at line 37 of file KeysInterpolation.h.

Member Function Documentation

◆ compute()

template<typename T >
static T til::KeysInterpolation< T >::compute ( f1,
f2,
f3,
f4,
f5,
f6,
x 
)
inlinestatic

Returns the interpolated value of four numbers using the Keys method.

Parameters
f1Value assumed to lie at position -2
f2Value assumed to lie at position -1
f3Value assumed to lie at position 0
f4Value assumed to lie at position 1
f5Value assumed to lie at position 2
f6Value assumed to lie at position 3
xThe interpolated value at position x

The documentation for this class was generated from the following file: