aimsalgo  5.1.2
Neuroimaging image processing
curv3Diso.h
Go to the documentation of this file.
1 /* This software and supporting documentation are distributed by
2  * Institut Federatif de Recherche 49
3  * CEA/NeuroSpin, Batiment 145,
4  * 91191 Gif-sur-Yvette cedex
5  * France
6  *
7  * This software is governed by the CeCILL-B license under
8  * French law and abiding by the rules of distribution of free software.
9  * You can use, modify and/or redistribute the software under the
10  * terms of the CeCILL-B license as circulated by CEA, CNRS
11  * and INRIA at the following URL "http://www.cecill.info".
12  *
13  * As a counterpart to the access to the source code and rights to copy,
14  * modify and redistribute granted by the license, users are provided only
15  * with a limited warranty and the software's author, the holder of the
16  * economic rights, and the successive licensors have only limited
17  * liability.
18  *
19  * In this respect, the user's attention is drawn to the risks associated
20  * with loading, using, modifying and/or developing or reproducing the
21  * software by the user in light of its specific status of free software,
22  * that may mean that it is complicated to manipulate, and that also
23  * therefore means that it is reserved for developers and experienced
24  * professionals having in-depth computer knowledge. Users are therefore
25  * encouraged to load and test the software's suitability as regards their
26  * requirements in conditions enabling the security of their systems and/or
27  * data to be ensured and, more generally, to use and operate it in the
28  * same conditions as regards security.
29  *
30  * The fact that you are presently reading this means that you have had
31  * knowledge of the CeCILL-B license and that you accept its terms.
32  */
33 
34 
35 #ifndef AIMS_MATH_CURV3DISO_H
36 #define AIMS_MATH_CURV3DISO_H
37 
38 #include <aims/math/mathelem.h>
40 
44 {
47 };
48 
49 
52 template <class T> inline
56 
57 
58 template <class T>
61  AimsCurvatureType type )
62 {
63  carto::VolumeRef<T> vol( rvol ); // convenience API
64  ASSERT(vol->getSizeT()==1);
65  carto::VolumeRef<float> curv( vol->getSizeX(), vol->getSizeY(),
66  vol->getSizeZ(), 1, vol->getBorders() );
67  curv.fillBorder(0);
68  curv = 0.0;
69  curv.setVoxelSize( vol->getVoxelSize() );
70  float fx,fy,fz,fxx,fyy,fzz,fxy,fxz,fyz;
71  std::vector<int> dim = vol->getSize();
72 
73  switch (type)
74  {
76  for (int z=2;z<dim[2]-2;z++)
77  for (int y=2;y<dim[1]-2;y++)
78  for (int x=2;x<dim[0]-2;x++)
79  { if (vol(x-1,y,z)!=vol(x+1,y,z) ||
80  vol(x,y-1,z)!=vol(x,y+1,z) ||
81  vol(x,y,z-1)!=vol(x,y,z+1) )
82  { fx = ((float)vol(x+1,y,z) - (float)vol(x-1,y,z) ) / 2;
83  fy = ((float)vol(x,y+1,z) - (float)vol(x,y-1,z) ) / 2;
84  fz = ((float)vol(x,y,z+1) - (float)vol(x,y,z-1) ) / 2;
85  fxx = ((float)vol(x+2,y,z) - 2 * (float)vol(x,y,z) +
86  (float)vol(x-2,y,z) ) / 4;
87  fyy = ((float)vol(x,y+2,z) - 2 * (float)vol(x,y,z) +
88  (float)vol(x,y-2,z) ) / 4;
89  fzz = ((float)vol(x,y,z+2) - 2 * (float)vol(x,y,z) +
90  (float)vol(x,y,z-2) ) / 4;
91  fxy = ((float)vol(x+1,y+1,z) -
92  (float)vol(x-1,y+1,z) -
93  (float)vol(x+1,y-1,z) +
94  (float)vol(x-1,y-1,z) ) / 4;
95  fxz = ((float)vol(x+1,y,z+1) -
96  (float)vol(x-1,y,z+1) -
97  (float)vol(x+1,y,z-1) +
98  (float)vol(x-1,y,z-1) ) / 4;
99  fyz = ((float)vol(x,y+1,z+1) -
100  (float)vol(x,y-1,z+1) -
101  (float)vol(x,y+1,z-1) +
102  (float)vol(x,y-1,z-1) ) / 4;
103  curv(x,y,z) = ( fx*fx*(fyy*fzz-fyz*fyz) +
104  2*fy*fz*(fxz*fxy-fxx*fyz) +
105  fy*fy*(fxx*fzz-fxz*fxz) +
106  2*fx*fz*(fyz*fxy-fyy*fxz) +
107  fz*fz*(fxx*fyy-fxy*fxy) +
108  2*fx*fy*(fxz*fyz-fzz*fxy) ) /
109  ((fx*fx+fy*fy+fz*fz)*(fx*fx+fy*fy+fz*fz));
110  }
111  else curv(x,y,z) = 0;
112  }
113  break;
114  case AIMS_MEAN_CURVATURE:
115  for (int z=2;z<dim[2]-2;z++)
116  for (int y=2;y<dim[1]-2;y++)
117  for (int x=2;x<dim[0]-2;x++)
118  { if (vol(x-1,y,z)!=vol(x+1,y,z) ||
119  vol(x,y-1,z)!=vol(x,y+1,z) ||
120  vol(x,y,z-1)!=vol(x,y,z+1) )
121  { fx = ((float)vol(x+1,y,z) - (float)vol(x-1,y,z) ) / 2;
122  fy = ((float)vol(x,y+1,z) - (float)vol(x,y-1,z) ) / 2;
123  fz = ((float)vol(x,y,z+1) - (float)vol(x,y,z-1) ) / 2;
124  fxx = ((float)vol(x+2,y,z) - 2 * (float)vol(x,y,z) +
125  (float)vol(x-2,y,z) ) / 4;
126  fyy = ((float)vol(x,y+2,z) - 2 * (float)vol(x,y,z) +
127  (float)vol(x,y-2,z) ) / 4;
128  fzz = ((float)vol(x,y,z+2) - 2 * (float)vol(x,y,z) +
129  (float)vol(x,y,z-2) ) / 4;
130  fxy = ((float)vol(x+1,y+1,z) -
131  (float)vol(x-1,y+1,z) -
132  (float)vol(x+1,y-1,z) +
133  (float)vol(x-1,y-1,z) ) / 4;
134  fxz = ((float)vol(x+1,y,z+1) -
135  (float)vol(x-1,y,z+1) -
136  (float)vol(x+1,y,z-1) +
137  (float)vol(x-1,y,z-1) ) / 4;
138  fyz = ((float)vol(x,y+1,z+1) -
139  (float)vol(x,y-1,z+1) -
140  (float)vol(x,y+1,z-1) +
141  (float)vol(x,y-1,z-1) ) / 4;
142  curv(x,y,z) = ( fx*fx*(fyy+fzz) - 2*fy*fz*fyz +
143  fy*fy*(fxx+fzz) - 2*fx*fz*fxz +
144  fz*fz*(fxx+fyy) - 2*fx*fy*fxy ) /
145  ( 2 * cube( sqrt(fx*fx + fy*fy + fz*fz) ) );
146  }
147  else curv(x,y,z) = 0;
148  }
149  break;
150  }
151  return curv;
152 }
153 
154 
155 #endif
#define ASSERT(EX)
int getSizeZ() const
std::vector< int > getBorders() const
void setVoxelSize(float vx, float vy=1., float vz=1., float vt=1.)
std::vector< float > getVoxelSize() const
void fillBorder(const T &value)
int getSizeT() const
std::vector< int > getSize() const
int getSizeY() const
int getSizeX() const
AimsCurvatureType
The different 3D curvature types.
Definition: curv3Diso.h:44
@ AIMS_GAUSSIAN_CURVATURE
Definition: curv3Diso.h:45
@ AIMS_MEAN_CURVATURE
Definition: curv3Diso.h:46
carto::VolumeRef< float > AimsIsoIntensityCurvature3D(const carto::rc_ptr< carto::Volume< T > > &vol, AimsCurvatureType type=AIMS_MEAN_CURVATURE)
3D curvature functions on an intensity image f(x,y,z) = I
Definition: curv3Diso.h:60
T cube(const T &val)