aimsalgo  5.1.2
Neuroimaging image processing
discriminantanalysis.h
Go to the documentation of this file.
1 /* This software and supporting documentation are distributed by
2  * Institut Federatif de Recherche 49
3  * CEA/NeuroSpin, Batiment 145,
4  * 91191 Gif-sur-Yvette cedex
5  * France
6  *
7  * This software is governed by the CeCILL-B license under
8  * French law and abiding by the rules of distribution of free software.
9  * You can use, modify and/or redistribute the software under the
10  * terms of the CeCILL-B license as circulated by CEA, CNRS
11  * and INRIA at the following URL "http://www.cecill.info".
12  *
13  * As a counterpart to the access to the source code and rights to copy,
14  * modify and redistribute granted by the license, users are provided only
15  * with a limited warranty and the software's author, the holder of the
16  * economic rights, and the successive licensors have only limited
17  * liability.
18  *
19  * In this respect, the user's attention is drawn to the risks associated
20  * with loading, using, modifying and/or developing or reproducing the
21  * software by the user in light of its specific status of free software,
22  * that may mean that it is complicated to manipulate, and that also
23  * therefore means that it is reserved for developers and experienced
24  * professionals having in-depth computer knowledge. Users are therefore
25  * encouraged to load and test the software's suitability as regards their
26  * requirements in conditions enabling the security of their systems and/or
27  * data to be ensured and, more generally, to use and operate it in the
28  * same conditions as regards security.
29  *
30  * The fact that you are presently reading this means that you have had
31  * knowledge of the CeCILL-B license and that you accept its terms.
32  */
33 
34 
35 #ifndef AIMS_MATH_DISCRIMINANTANALYSIS_H
36 #define AIMS_MATH_DISCRIMINANTANALYSIS_H
37 
38 #include <aims/def/general.h>
39 #include <vector>
41 
42 namespace aims
43 {
44 
46  {
47  public:
48  DiscriminantAnalysisElement( int significantEV = -1, double PIj = 1. ) ;
50 
51  template <class T>
52  void doIt( const carto::rc_ptr<carto::Volume<T> > & individuals ) ;
53 
54  template <class T>
55  void doIt( const std::list< Point3d>& selectedPoints,
56  const carto::rc_ptr<carto::Volume<T> >& data ) ;
57 
58  // set a priori class probability
59  void setPIj( double PIj )
60  {
61  _PIj = PIj ;
62  if( _computed )
63  _lnAddFactor = -log( _detVarCov / ( _PIj * _PIj ) ) ;
64  }
65 
66  double posteriorProbability( const carto::rc_ptr<carto::Volume<double> >& individual,
67  double pX ) const ;
68 
69  /* for comparison purposes only, because x prior probability is not taken
70  into account */
71  double lnPosteriorProbability( const carto::rc_ptr<carto::Volume<double> >& individual ) const ;
72  double distance( const carto::rc_ptr<carto::Volume<double> >& x ) const ;
73 
74  const carto::VolumeRef<double>& mean() const ;
75  bool computed() const {return _computed ; }
76 
77  protected:
79  bool _computed ;
82  double _PIj ;
83 
85 
87 
88  double _detVarCov ;
89  double _normFactor ;
90  double _lnAddFactor ;
91 
92  // Temporary
93  std::vector<Point3d> _indivPosition ;
94 
95  };
96 
97 
98  template <class T>
100  {
101  public:
103  const std::vector< std::list <Point3d> >& classes,
104  int significantEV = -1,
105  const std::vector<double>& PIj
106  = std::vector<double>() ) ;
108 
109  std::vector<double> posteriorProbabilities( const carto::rc_ptr<carto::Volume<double> >& x,
110  double px ) ;
111  std::vector<double> andersonScores(
112  const carto::rc_ptr<carto::Volume<double> >& x ) ;
113 
115 
116  bool classification( const carto::rc_ptr<carto::Volume<T> >& dynamicImage,
118  carto::rc_ptr<carto::Volume<short> >& segmented ) ;
119  bool fuzzyClassification( const carto::rc_ptr<carto::Volume<T> >& dynamicImage,
121  carto::rc_ptr<carto::Volume<float> >& fuzzySegmented,
122  const carto::rc_ptr<carto::Volume<double> > &indivPriorProbabilities =
124 
125  private:
126  int _significantEV ;
127  const std::vector< std::list< Point3d > >& _classes ;
128  const carto::VolumeRef<T> _data ;
129  std::vector<double> _PIj ;
130 
131  std::vector<DiscriminantAnalysisElement> _discrElements ;
132  } ;
133 }
134 
135 #endif
const carto::VolumeRef< double > & mean() const
double posteriorProbability(const carto::rc_ptr< carto::Volume< double > > &individual, double pX) const
double lnPosteriorProbability(const carto::rc_ptr< carto::Volume< double > > &individual) const
carto::VolumeRef< double > _mean
void doIt(const carto::rc_ptr< carto::Volume< T > > &individuals)
DiscriminantAnalysisElement(int significantEV=-1, double PIj=1.)
double distance(const carto::rc_ptr< carto::Volume< double > > &x) const
carto::VolumeRef< double > _invVarCov
bool classification(const carto::rc_ptr< carto::Volume< T > > &dynamicImage, const carto::rc_ptr< carto::Volume< byte > > &mask, carto::rc_ptr< carto::Volume< short > > &segmented)
DiscriminantAnalysis(const carto::rc_ptr< carto::Volume< T > > &data, const std::vector< std::list< Point3d > > &classes, int significantEV=-1, const std::vector< double > &PIj=std::vector< double >())
int affectedTo(const carto::rc_ptr< carto::Volume< double > > &x)
std::vector< double > andersonScores(const carto::rc_ptr< carto::Volume< double > > &x)
std::vector< double > posteriorProbabilities(const carto::rc_ptr< carto::Volume< double > > &x, double px)
bool fuzzyClassification(const carto::rc_ptr< carto::Volume< T > > &dynamicImage, const carto::rc_ptr< carto::Volume< byte > > &mask, carto::rc_ptr< carto::Volume< float > > &fuzzySegmented, const carto::rc_ptr< carto::Volume< double > > &indivPriorProbabilities=carto::rc_ptr< carto::Volume< double > >())
BucketMap< Void > * mask(const BucketMap< Void > &src, const BucketMap< Void > &m, bool intersect=true)