aimsalgo  5.1.2
Neuroimaging image processing
dynamicstrategy_d.h
Go to the documentation of this file.
1 /* This software and supporting documentation are distributed by
2  * Institut Federatif de Recherche 49
3  * CEA/NeuroSpin, Batiment 145,
4  * 91191 Gif-sur-Yvette cedex
5  * France
6  *
7  * This software is governed by the CeCILL-B license under
8  * French law and abiding by the rules of distribution of free software.
9  * You can use, modify and/or redistribute the software under the
10  * terms of the CeCILL-B license as circulated by CEA, CNRS
11  * and INRIA at the following URL "http://www.cecill.info".
12  *
13  * As a counterpart to the access to the source code and rights to copy,
14  * modify and redistribute granted by the license, users are provided only
15  * with a limited warranty and the software's author, the holder of the
16  * economic rights, and the successive licensors have only limited
17  * liability.
18  *
19  * In this respect, the user's attention is drawn to the risks associated
20  * with loading, using, modifying and/or developing or reproducing the
21  * software by the user in light of its specific status of free software,
22  * that may mean that it is complicated to manipulate, and that also
23  * therefore means that it is reserved for developers and experienced
24  * professionals having in-depth computer knowledge. Users are therefore
25  * encouraged to load and test the software's suitability as regards their
26  * requirements in conditions enabling the security of their systems and/or
27  * data to be ensured and, more generally, to use and operate it in the
28  * same conditions as regards security.
29  *
30  * The fact that you are presently reading this means that you have had
31  * knowledge of the CeCILL-B license and that you accept its terms.
32  */
33 
34 
35 #ifndef DYNAMICSTRATEGY_D_H
36 #define DYNAMICSTRATEGY_D_H
37 
43 #include <vector>
44 #include <list>
45 #include <stdlib.h>
46 
47 
48 template <class T>
50  aims::KmeansStrategy<T>( dynamicStrat )
51 {
52  this->myMeanVector = dynamicStrat.myMeanVector ;
53  this->myVarianceVector = dynamicStrat.myVarianceVector ;
54  this->myDistance = dynamicStrat.myDistance ;
55  this->myBeginIndex = dynamicStrat.myBeginIndex ;
56  this->myEndIndex = dynamicStrat.myEndIndex ;
57 }
58 
59 
60 template <class T>
62  int beginIndex , int endIndex ,
63  const std::vector< aims::Individuals<T> >& codeVector ) :
64  aims::KmeansStrategy<T>( nbIterations, distanceType, beginIndex, endIndex, codeVector )
65 {
66 }
67 
68 
69 template <class T>
71 {
72 }
73 
74 
75 template <class T>
77 {
78  return new aims::DynamicStrategy<T>( *this ) ;
79 }
80 
81 
82 template <class T>
83 double aims::DynamicStrategy<T>::iterate( int& nbOfIterations,
84  std::vector< std::list< Individuals<T> > >& classes )
85 {
86  std::cout << "Dynamic clustering - Iteration n° " << nbOfIterations << std::endl ;
87  int nbOfClasses = classes.size() ;
88  int indMin = 0 ;
89  unsigned int classCardNew, classCardOld ;
90  int nbChanges = 0 ;
91 
92 /* std::cout << "nb d'individus ds les classes en entrant ds iterate:" ; */
93 /* for( int c = 0 ; c < nbOfClasses ; ++c ) */
94 /* std::cout << " " << classes[c].size() ; */
95 /* std::cout << std::endl ; */
96 
97  std::vector< std::list< aims::Individuals<T> > >* newClasses ;
98  newClasses = &classes ;
99 
100  // QUAND LES INDIVIDUS SONT DS LA CLASSE 0, FAIRE 1 ITERATION DE KMEANS
101  if( !nbOfIterations && ( classes[0].size() != 0 ) ){
102  // dispatcher les individus de la classe 0 dans les classes 1 à c
103  typename std::list< aims::Individuals<T> >::iterator iter( classes[0].begin() ),
104  last( classes[0].end() ) ;
105  while( iter != last ){
106  int indMin = aggregate( *iter ) ;
107  (*newClasses)[indMin].push_back( *iter ) ;
108  ++iter ;
109  }
110  (*newClasses)[0].clear() ;
111  // faire l'analyse des classes
112  analyse( *newClasses ) ;
113  }
114  else{
115  for( int c = 0 ; c < nbOfClasses ; ++c ){
116  typename std::list< aims::Individuals<T> >::iterator iter( classes[c].begin() ),
117  last( classes[c].end() ), iterToMove ;
118  while( iter != last ){
119  iterToMove = iter ;
120  indMin = aggregate( *iter ) ;
121  ++iter ;
122  // si l'individu change de classe, faire les modifs des classes et le calcul des centres de ces classes
123  if( c != indMin ){
124  ++nbChanges ;
125  classCardNew = (*newClasses)[indMin].size() ;
126  classCardOld = (*newClasses)[c].size() ;
127 
128  centerComputation( indMin, c, classCardNew, classCardOld, *iterToMove ) ;
129 
130  (*newClasses)[indMin].push_back( *iterToMove ) ;
131  (*newClasses)[c].erase( iterToMove ) ;
132  }
133  }
134  }
135  }
136 
137  classes = *newClasses ;
138 
139  std::cout << "nb d'individus - iterate end :" ;
140  for( int c = 0 ; c < nbOfClasses ; ++c )
141  std::cout << " " << classes[c].size() ;
142  std::cout << std::endl ;
143 
144  double new_inertia = globInertia( classes ) ; // calcul de l'inertie globale */
145 
146  ++nbOfIterations ; // compteur nb d'iterations
147 
148  return new_inertia ;
149 }
150 
151 
152 template <class T>
153 void aims::DynamicStrategy<T>::centerComputation( int cNew, int cOld, unsigned int cardNew,
154  unsigned int cardOld, const Individuals<T>& ind )
155 {
156  // récupérer le vecteur code moyen de la classe
157  Individuals<T> meanIndivNew = this->getMeanValue( cNew ) ;
158  Individuals<T> meanIndivOld = this->getMeanValue( cOld ) ;
159 
160  Point3df meanIndivPosNew = meanIndivNew.position() ;
161  Point3df meanIndivPosOld = meanIndivOld.position() ;
162  Point3df indPos = ind.position() ;
163 
164  for ( int i = 0 ; i < 3 ; ++i ){
165  meanIndivPosNew[i] = ( ( meanIndivPosNew[i] * cardNew ) + indPos[i] ) / ( cardNew + 1 ) ;
166  meanIndivPosOld[i] = ( ( meanIndivPosOld[i] * cardOld ) - indPos[i] ) / ( cardOld - 1 ) ;
167  }
168 
169  std::vector<T> indVal = ind.value() ;
170  unsigned int valIndSize = indVal.size() ;
171 
172  std::vector<T> meanIndivValNew = meanIndivNew.value() ;
173  std::vector<T> meanIndivValOld = meanIndivOld.value() ;
174  std::vector<T> meanIndivValNewClass = meanIndivValNew ;
175  std::vector<T> meanIndivValOldClass = meanIndivValOld ;
176 
177  for( unsigned int k = 0 ; k < valIndSize ; ++k ){
178  meanIndivValNewClass[k] = ( ( meanIndivValNew[k] * cardNew ) + indVal[k] ) / ( cardNew + 1 ) ;
179  meanIndivValOldClass[k] = ( ( meanIndivValOld[k] * cardOld ) - indVal[k] ) / ( cardOld - 1 ) ;
180  }
181 
182  Individuals<T> newMeanIndiv( meanIndivPosNew, meanIndivValNewClass ) ;
183  this->myMeanVector[cNew] = newMeanIndiv ;
184  Individuals<T> oldMeanIndiv( meanIndivPosOld, meanIndivValOldClass ) ;
185  this->myMeanVector[cOld] = oldMeanIndiv ;
186 }
187 
188 
189 #endif
DynamicStrategy(const DynamicStrategy< T > &dynamicStrat)
virtual ClassifStrategy< T > * clone() const
virtual double iterate(int &nbOfIterations, std::vector< std::list< Individuals< T > > > &classes)
void centerComputation(int cNew, int cOld, unsigned int cardNew, unsigned int cardOld, const Individuals< T > &ind)
const std::vector< T > & value() const
Definition: individuals.h:51
const Point3df & position() const
Definition: individuals.h:50
float(* myDistance)(const std::vector< T > &ind1, const std::vector< T > &ind2, unsigned int beginIndex, unsigned int endIndex)
std::vector< Individuals< T > > myMeanVector
std::vector< Individuals< T > > myVarianceVector
T * iterator