aimsalgo  5.1.2
Neuroimaging image processing
gjacobian.h
Go to the documentation of this file.
1 /* This software and supporting documentation are distributed by
2  * Institut Federatif de Recherche 49
3  * CEA/NeuroSpin, Batiment 145,
4  * 91191 Gif-sur-Yvette cedex
5  * France
6  *
7  * This software is governed by the CeCILL-B license under
8  * French law and abiding by the rules of distribution of free software.
9  * You can use, modify and/or redistribute the software under the
10  * terms of the CeCILL-B license as circulated by CEA, CNRS
11  * and INRIA at the following URL "http://www.cecill.info".
12  *
13  * As a counterpart to the access to the source code and rights to copy,
14  * modify and redistribute granted by the license, users are provided only
15  * with a limited warranty and the software's author, the holder of the
16  * economic rights, and the successive licensors have only limited
17  * liability.
18  *
19  * In this respect, the user's attention is drawn to the risks associated
20  * with loading, using, modifying and/or developing or reproducing the
21  * software by the user in light of its specific status of free software,
22  * that may mean that it is complicated to manipulate, and that also
23  * therefore means that it is reserved for developers and experienced
24  * professionals having in-depth computer knowledge. Users are therefore
25  * encouraged to load and test the software's suitability as regards their
26  * requirements in conditions enabling the security of their systems and/or
27  * data to be ensured and, more generally, to use and operate it in the
28  * same conditions as regards security.
29  *
30  * The fact that you are presently reading this means that you have had
31  * knowledge of the CeCILL-B license and that you accept its terms.
32  */
33 
34 
35 #ifndef AIMS_SIGNALFILTER_GJACOBIAN_H
36 #define AIMS_SIGNALFILTER_GJACOBIAN_H
37 
42 
43 
44 template< class T >
46 {
47 public:
48 
49  GaussianJacobian( float sx=1.0f, float sy=1.0f, float sz=1.0f );
50  virtual ~GaussianJacobian() { }
51 
54 
55 private:
56 
57  float sigx;
58  float sigy;
59  float sigz;
60 };
61 
62 
63 template< class T > inline
64 GaussianJacobian< T >::GaussianJacobian( float sx, float sy, float sz )
65  : sigx( sx ), sigy( sy ), sigz( sz )
66 {
67  ASSERT( sigx >= 0.1f && sigx <= 100.0f );
68  ASSERT( sigy >= 0.1f && sigy <= 100.0f );
69  ASSERT( sigz >= 0.1f && sigz <= 100.0f );
70 }
71 
72 
73 template< class T > inline AimsVector< carto::VolumeRef< float >, 3 >
75 {
76  std::vector<float> vs = data->getVoxelSize();
77  float sx = sigx / vs[0];
78  float sy = sigy / vs[1];
79  float sz = sigz / vs[2];
80 
83 
85  imaF=carto::VolumeRef<float>( data->getSize() );
86  conv.convert( data, imaF );
87 
88  for ( int i=0; i<3; i++ )
89  res[i]=imaF.copy();
90 
91  GaussianSlices gsli;
92  GaussianLines glin;
93  GaussianColumns gcol;
94 
95  // d / dx
96  glin.doit( res[ 0 ], GCoef( sx, GCoef::gradient ) );
97  gcol.doit( res[ 0 ], GCoef( sy ) ); // because default is smoothing
98  gsli.doit( res[ 0 ], GCoef( sz ) );
99 
100  // d / dy
101  glin.doit( res[ 1 ], GCoef( sx ) );
102  gcol.doit( res[ 1 ], GCoef( sy, GCoef::gradient ) );
103  gsli.doit( res[ 1 ], GCoef( sz ) );
104 
105  // d / dz
106  glin.doit( res[ 2 ], GCoef( sx ) );
107  gcol.doit( res[ 2 ], GCoef( sy ) );
108  gsli.doit( res[ 2 ], GCoef( sz, GCoef::gradient ) );
109 
110  return res;
111 }
112 
113 #endif
#define ASSERT(EX)
Definition: gcoef.h:42
@ gradient
Definition: gcoef.h:49
void doit(carto::rc_ptr< carto::Volume< float > > &)
virtual ~GaussianJacobian()
Definition: gjacobian.h:50
GaussianJacobian(float sx=1.0f, float sy=1.0f, float sz=1.0f)
Definition: gjacobian.h:64
AimsVector< carto::VolumeRef< float >, 3 > doit(const carto::rc_ptr< carto::Volume< T > > &)
Definition: gjacobian.h:74
void doit(carto::rc_ptr< carto::Volume< float > > &)
void doit(carto::rc_ptr< carto::Volume< float > > &)
virtual void convert(const INP &in, OUTP &out) const
VolumeRef< T > copy() const