None
Input_ListOf_FeatImages: ListOf( 3D Volume ) ( input )
Input_ListOf_Segmented_Images: ListOf( ROI ) ( input )
Clustering_Method: Choice ( input )
Clustering_Threshold: Float ( optional, input )
Clustering_Temperature_Min: Float ( optional, input )
Clustering_Sigma_Ratio: Float ( optional, input )
Clustering_Cluster_Max: Integer ( optional, input )
Clustering_Size_Min: Float ( optional, input )
ListOf_Prior_Probabilities: ListOf( Float ) ( optional, input )
Output_Model: Text file ( output )
Toolbox : BrainRAT
User level : 1
Identifier :
SegmentationModelLearningFile name :
brainvisa/toolboxes/brainrat/processes/agregatesegmentation/SegmentationModelLearning.pySupported file formats :
Input_ListOf_FeatImages :gz compressed NIFTI-1 image, Aperio svs, DICOM image, Directory, ECAT i image, ECAT v image, FDF image, FreesurferMGH, FreesurferMGZ, GIS image, Hamamatsu ndpi, Hamamatsu vms, Hamamatsu vmu, JPEG image, Leica scn, MINC image, NIFTI-1 image, SPM image, Sakura svslide, TIFF image, TIFF image, TIFF(.tif) image, TIFF(.tif) image, Ventana bif, Zeiss czi, gz compressed MINC image, gz compressed NIFTI-1 imageInput_ListOf_Segmented_Images :Graph and data, Graph and dataOutput_Model :Text file, Text file